【POJ1845】Sumdiv【数论】

在这里插入图片描述
l i n k link link

分析:

考虑唯一分解定理 A A A 可以表示为 ∏ i = 1 n p i c i \prod_{i=1}^{n} p_i^{c_i} i=1npici
约数之和即 ( 1 + p 1 + p 1 2 + . . . + p 1 c 1 ) × ( 1 + p 2 + p 2 2 + . . . + p 2 c 2 ) × . . . × ( 1 + p n + p n 2 + . . . + p n c n ) (1+p_1+p_1^2+...+p_1^{c_1})\times(1+p_2+p_2^2+...+p_2^{c_2})\times...\times(1+p_n+p_n^2+...+p_n^{c_n}) (1+p1+p12+...+p1c1)×(1+p2+p22+...+p2c2)×...×(1+pn+pn2+...+pncn)

那么 A B A^B AB可表示为 ∏ i = 1 n p i c i × B \prod_{i=1}^n p_i^{c_i\times B} i=1npici×B
此时约数之和即 ( 1 + p 1 + p 1 2 + . . . + p 1 c 1 × B ) × ( 1 + p 2 + p 2 2 + . . . + p 2 c 2 × B ) × . . . × ( 1 + p n + p n 2 + . . . + p n c n × B ) (1+p_1+p_1^2+...+p_1^{c_1\times B})\times(1+p_2+p_2^2+...+p_2^{c_2\times B})\times...\times(1+p_n+p_n^2+...+p_n^{c_n\times B}) (1+p1+p12+...+p1c1×B)×(1+p2+p22+...+p2c2×B)×...×(1+pn+pn2+...+pncn×B)
每部分可以等比数列求和 即 ∏ i = 1 n p i c i + 1 − 1 p i − 1 \prod_{i=1}^n\frac{p_i^{c_i+1}-1}{p_i-1} i=1npi1pici+11 所以快速幂乘 p i − 1 p_i-1 pi1 的逆元即可

注意到 9901 9901 9901 是质数 若 p i − 1 p_i-1 pi1 9901 9901 9901 的倍数 逆元会不存在 此时 p i ≡ 1 ( m o d 9901 ) p_i\equiv1\pmod{9901} pi1(mod9901)
所以等比数列之和为 ( 1 + 1 + 1 2 + . . . + 1 c n × B + 1 ) = c n × B + 1 (1+1+1^2+...+1^{c_n\times B+1})=c_n\times B+1 (1+1+12+...+1cn×B+1)=cn×B+1 答案即 ∏ i = 1 n c i × B + 1 \prod_{i=1}^n c_i\times B+1 i=1nci×B+1

CODE:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define reg register
using namespace std;
typedef long long ll;
const ll Mod=9901,N=1e5+5;
ll A,B,p[N],c[N],tot,ans=1;
void calc(ll x)
{
	for(int i=2;i*i<=x;i++)
	{
		if(x%i==0)
		{
			p[++tot]=i;
			c[tot]=1;
			x/=i;
			while(x%i==0)
				x/=i,c[tot]++;
		}
	}
	if(x>1) p[++tot]=x,c[tot]=1;
}
ll ksm(ll a,ll k)
{
	ll res=1;
	while(k)
	{
		if(k&1) (res*=a)%=Mod;
		(a*=a)%=Mod;
		k>>=1;
	}
	return res;
}
int main(){
	scanf("%lld%lld",&A,&B);
	calc(A);
	for(int i=1;i<=tot;i++)
	{
		int a=p[i],k=B*c[i];
		((a-1)%Mod==0)?ans=ans%Mod*(k+1)%Mod:ans=ans%Mod*(ksm(a,k+1)%Mod-1+Mod)%Mod*ksm(a-1,Mod-2)%Mod;
	}
	printf("%lld",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值