大家好,今天和各位分享一下处理序列数据的循环神经网络RNN的基本原理,并用 Pytorch 实现 RNN 层和 RNNCell 层。
之前的博文中已经用过循环神经网络做过许多实战案例,感兴趣的可以看我这个专栏:https://blog.csdn.net/dgvv4/category_11712004.html
1. 序列的表示方法
在循环神经网络中,序列数据的 shape 通常是 [batch, seq_len, feature_len],其中 seq_len 代表特征的个数,feature_len 代表每个特征的表示方法。
对于自然语言任务: 以 shape=[b, 5, 100] 为例,其中 5 代表每句话有 5 个单词,而 100 代表每个单词使用一个长度为 100 的向量来表示。
对于时间序列任务: 以 shape=[b, 100, 1] 为例,其中 100 代表每个 batch 统计了 100 天的数据,每天有 1 个气温值。
下面以语言的情感分析任务为例,向大家介绍处理序列数据的传统方法,如下图:
现在有一个句子 The flower is so beautiful 作为输入,通过 wordembedding 将每个单词用一个长度为 100 的向量来表示,然后将每个单词输入至线性层提取特征,每个单词的输出结果是一个长度为 2 的向量,最后将所有单词聚合起来,经过一个线性层输出得到分类结果。
传统的序列处理方法存在许多缺陷:
(1)计算量庞大。现实生活中的单词量巨大,对每个单词生成一个线性层 x@w+b 提取特征,然后再对线性层输出结果做聚合,模型非常复杂,参数量极其庞大。
(2)没有考虑上下文语境。传统方法只是针对一句话中的每个单词做单独的分析,没有联系前后单词之间的信息。如:i do not think the flower is beautiful 句子中,不能看到 beautiful 就说这句话一定是好评,要联系到上文的 not 再做分析。
2. RNN 原理解析
针对传统序列任务模型存在的问题,RNN做出了改进:
(1)优化参数量。通过权值共享,把每个单词的 w1、w2、w3... 用一个张量 W 来表示,一个RNN层就处理一整个句子。
(2)联系上下文语境。使用一个时序单元处理上下文信息,当前时刻的输入一定要考虑到上一时刻的输出。
下面仍以语言的情感分析任务为例,向大家介绍RNN的基本原理。
RNN单元的计算公式为:
其中,