week10-图论(最小生成树)

本文介绍了图论在解决实际问题中的应用,包括如何使用最小生成树解决合根植物问题和奶酪问题,以及如何利用一笔画算法解决Einstein学画画的问题。通过对经典算法的理解和实践,可以更好地理解和运用图论知识。
摘要由CSDN通过智能技术生成

1.Einstein学画画

题目描述

Einstein 学起了画画。

此人比较懒~~,他希望用最少的笔画画出一张画……

给定一个无向图,包含 n 个顶点(编号 1 ~ n),m 条边,求最少用多少笔可以画出图中所有的边。

输入格式

第一行两个整数 n, m。

接下来 m 行,每行两个数 a, b(a != b),表示 a, b 两点之间有一条边相连。

一条边不会被描述多次。

输出格式

一个数,即问题的答案。

样例 #1

样例输入 #1

5 5
2 3
2 4
2 5
3 4
4 5

样例输出 #1

1

提示

对于 50 % 的数据,n < 50,m < 100。

对于 100% 的数据,1 < n < 1000,1 < m < {10}^5。

这道题就是无向图的欧拉路的问题,简单来说就是一笔画的问题。在这里需要牵扯到一些定理和结论,为了方便,我直接引用洛谷这道题题解里的这位大佬的题解来解释。

这道题最关键的就是欧拉路的判定:

若从起点到终点的路径恰通过图中每条边一次(起点与终点是不同的点),
则该路径称为欧拉路。
定理1:
存在欧拉路的条件:图是连通的,且存在2个奇点。
如果存在2个奇点,则欧拉路一定是从一个奇点出发,以另一个奇点结束。

顶点的度,就是指和该顶点相关联的边数。

出度:有向图中从某顶点出发的边数。

入度:有向图中在某顶点结束的边数。

如果只存在两个奇点,那么这个图必定可以1笔画完,然后每多加2个,那么所需画的笔数就要加1(多加1个也是一样的)。所以我们只要判断一下每个点的度数,判断它是不是奇点,就可以很快的求出答案了.

注意:如果没有奇点,那么所需要的笔数也是1笔(因为最少就是1笔),如下面这个图:

在这里插入图片描述

完整注释代码如下:

#include<bits/stdc++.h>
using namespace std;
int du[1005],n,m,ans;  
int main(){
	cin>>n>>m;
	int x,y,cnt;
	for(int i=0;i<m;i++){
		cin>>x>>y;
		du[x]++;  
		du[y]++;  //在输入边时,顺便记录度数
	}
	for(int i=1;i<=n;i++){
		if(du[i]%2){
			ans++;  //记录奇点的数目
		}
	}
	cnt=ans/2;  //结果就为奇点数/2
	if(!ans){
		cout<<"1";  //特判奇点数为0的情况
		return 0;
	}
	cout<<cnt;
	return 0;
}

2.[蓝桥杯 2017 国 C] 合根植物

题目描述

w 星球的一个种植园,被分成 m * n 个小格子(东西方向 m 行,南北方向 n 列)。每个格子里种了一株合根植物。

这种植物有个特点,它的根可能会沿着南北或东西方向伸展,从而与另一个格子的植物合成为一体。

如果我们告诉你哪些小格子间出现了连根现象,你能说出这个园中一共有多少株合根植物吗?

输入格式

第一行,两个整数 m,n,用空格分开,表示格子的行数、列数(1<m,n<1000)。

接下来一行,一个整数 k,表示下面还有 k 行数据 (0<k<10^5)。

接下来 k 行,第行两个整数 a,b,表示编号为 a 的小格子和编号为 b 的小格子合根了。

格子的编号一行一行,从上到下,从左到右编号。

比如:5 * 4 的小格子,编号:

1  2  3  4
5  6  7  8
9  10 11 12
13 14 15 16
17 18 19 20

输出格式

一行一个整数,表示答案

样例 #1

样例输入 #1

5 4
16
2 3
1 5
5 9
4 8
7 8
9 10
10 11
11 12
10 14
12 16
14 18
17 18
15 19
19 20
9 13
13 17

样例输出 #1

5

提示

样例解释

在这里插入图片描述

时限 1 秒, 256M。蓝桥杯 2017 年第八届国赛

考察并查表的例题。那么我们首先需要知道并查表是什么?

这里提供一篇资料来了解并查表:算法学习笔记(1) : 并查集 - 知乎 (zhihu.com)

其实并查表的代码也很短,这里直接提供必查表的基本代码:

intfa[1005];//表示每个节点的父亲节点
void init(int N){//初始化
  for(int i=1;i<=N;++i)fa[i]=i;
}
int getfa (int x){//查找父节点,并进行路径压缩
  return fa[x]==x?x:fa[x]=getfa(fa[x]);
}
void merge(int x,int y){//合并x,y两点所在的集合
  fa[getfa(x)]=getfa(y);
}
bool check(int x,int y){
  return getfa(x)==getfa(y);//判断x,y是否在集合中
}

知道并查表后,这道题也就十分简单了。我们先对每个节点进行初始化:

void init(int N){//初始化
  for(int i=1;i<=N;++i)fa[i]=i;  
}

让每个节点的老大(也就是父节点)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值