1.Einstein学画画
题目描述
Einstein 学起了画画。
此人比较懒~~,他希望用最少的笔画画出一张画……
给定一个无向图,包含 n 个顶点(编号 1 ~ n),m 条边,求最少用多少笔可以画出图中所有的边。
输入格式
第一行两个整数 n, m。
接下来 m 行,每行两个数 a, b(a != b),表示 a, b 两点之间有一条边相连。
一条边不会被描述多次。
输出格式
一个数,即问题的答案。
样例 #1
样例输入 #1
5 5
2 3
2 4
2 5
3 4
4 5
样例输出 #1
1
提示
对于 50 % 的数据,n < 50,m < 100。
对于 100% 的数据,1 < n < 1000,1 < m < {10}^5。
这道题就是无向图的欧拉路的问题,简单来说就是一笔画的问题。在这里需要牵扯到一些定理和结论,为了方便,我直接引用洛谷这道题题解里的这位大佬的题解来解释。
这道题最关键的就是欧拉路的判定:
若从起点到终点的路径恰通过图中每条边一次(起点与终点是不同的点),
则该路径称为欧拉路。
定理1:
存在欧拉路的条件:图是连通的,且存在2个奇点。
如果存在2个奇点,则欧拉路一定是从一个奇点出发,以另一个奇点结束。
顶点的度,就是指和该顶点相关联的边数。
出度:有向图中从某顶点出发的边数。
入度:有向图中在某顶点结束的边数。
如果只存在两个奇点,那么这个图必定可以1笔画完,然后每多加2个,那么所需画的笔数就要加1(多加1个也是一样的)。所以我们只要判断一下每个点的度数,判断它是不是奇点,就可以很快的求出答案了.
注意:如果没有奇点,那么所需要的笔数也是1笔(因为最少就是1笔),如下面这个图:
完整注释代码如下:
#include<bits/stdc++.h>
using namespace std;
int du[1005],n,m,ans;
int main(){
cin>>n>>m;
int x,y,cnt;
for(int i=0;i<m;i++){
cin>>x>>y;
du[x]++;
du[y]++; //在输入边时,顺便记录度数
}
for(int i=1;i<=n;i++){
if(du[i]%2){
ans++; //记录奇点的数目
}
}
cnt=ans/2; //结果就为奇点数/2
if(!ans){
cout<<"1"; //特判奇点数为0的情况
return 0;
}
cout<<cnt;
return 0;
}
2.[蓝桥杯 2017 国 C] 合根植物
题目描述
w 星球的一个种植园,被分成 m * n 个小格子(东西方向 m 行,南北方向 n 列)。每个格子里种了一株合根植物。
这种植物有个特点,它的根可能会沿着南北或东西方向伸展,从而与另一个格子的植物合成为一体。
如果我们告诉你哪些小格子间出现了连根现象,你能说出这个园中一共有多少株合根植物吗?
输入格式
第一行,两个整数 m,n,用空格分开,表示格子的行数、列数(1<m,n<1000)。
接下来一行,一个整数 k,表示下面还有 k 行数据 (0<k<10^5)。
接下来 k 行,第行两个整数 a,b,表示编号为 a 的小格子和编号为 b 的小格子合根了。
格子的编号一行一行,从上到下,从左到右编号。
比如:5 * 4 的小格子,编号:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
输出格式
一行一个整数,表示答案
样例 #1
样例输入 #1
5 4
16
2 3
1 5
5 9
4 8
7 8
9 10
10 11
11 12
10 14
12 16
14 18
17 18
15 19
19 20
9 13
13 17
样例输出 #1
5
提示
样例解释
时限 1 秒, 256M。蓝桥杯 2017 年第八届国赛
考察并查表的例题。那么我们首先需要知道并查表是什么?
这里提供一篇资料来了解并查表:算法学习笔记(1) : 并查集 - 知乎 (zhihu.com)
其实并查表的代码也很短,这里直接提供必查表的基本代码:
intfa[1005];//表示每个节点的父亲节点
void init(int N){//初始化
for(int i=1;i<=N;++i)fa[i]=i;
}
int getfa (int x){//查找父节点,并进行路径压缩
return fa[x]==x?x:fa[x]=getfa(fa[x]);
}
void merge(int x,int y){//合并x,y两点所在的集合
fa[getfa(x)]=getfa(y);
}
bool check(int x,int y){
return getfa(x)==getfa(y);//判断x,y是否在集合中
}
知道并查表后,这道题也就十分简单了。我们先对每个节点进行初始化:
void init(int N){//初始化
for(int i=1;i<=N;++i)fa[i]=i;
}
让每个节点的老大(也就是父节点)