几何拓扑学

本文介绍了几何拓扑学从早期发展到1960年代后的变化,包括代数拓扑学、微分拓扑学的分支,以及斯梅尔和瑟斯顿的重要突破。琼斯多项式的发现促进了低维拓扑学与数学物理的交叉。这些进步使几何拓扑学在数学其他领域得到广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

啊,哈喽,小伙伴们大家好。我是#张亿,今天呐,学的是拓扑学原理——几何拓扑学

随着时间的变迁几何拓扑学几乎等同于考虑二维、三维、或者四维的低维拓扑学

1945年后拓扑学发展迅速,逐渐地数学家将这个学科分为三个分支:

代数拓扑学(伦移等问题)

几何拓扑学(有名的庞加莱猜想属于此类,已为俄罗斯数学家佩雷尔曼解决。)

微分拓扑学研究可微分结构等等( 见          微分拓扑学-CSDN博客

这些分支的基础是研究一般的拓扑空间点集拓扑学。但是随着时间的发展这些区分又越来越显得是人为的区分了。

1960年代初开始的许多研究成果导致几何拓扑学本身变化了。1961年史提芬·斯梅尔解决了高维中的庞加莱猜想,这使得三维和四维显得尤其困难。事实上这些困难的解决需要新的技术,而与此同时高维提供的自由度使得换球术的问题也成为可计算的问题了。威廉·瑟斯顿在1970年代末提出的几何化猜想提供了在低维中几何与拓扑之间的关系的理论基础。瑟斯顿使用过去在数学中只是很弱地互相关联的分支的不同技术解决了Haken流体的几何化问题。1980年代初沃恩·琼斯发现的琼斯多项式为扭结理论提供了新的方向,同时也给数学物理与低维拓扑学之间至今为止依然不明了的关系提供了新的推动。

这些发展使得几何拓扑学被更好地应用于数学的其它领域了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值