DeepSeek 的模型性能在多个方面表现出色,与其他主流 AI 模型相比具有独特的优势。以下是详细的对比分析:
技术架构对比
特性 | DeepSeek | OpenAI GPT-4 | Google Gemini | Anthropic Claude |
---|---|---|---|---|
架构 | 混合专家(MoE)架构,结合强化学习 | 基于 Transformer 的密集模型 | 多模态模型,支持文本、图像和音频 | 注重对齐性,减少有害内容生成 |
参数量 | DeepSeek-V3:6710 亿参数(每次推理激活 370 亿参数) | 1750 亿参数 | 未明确,但支持多模态数据 | 未明确,但注重推理效率 |
训练成本 | DeepSeek-V3:557.6 万美元 | 1 亿美元 | 未明确,但较高 | 未明确,但较高 |