codeforces 1182E Product Oriented Recurrence(欧拉降幂+矩阵快速幂递推数列)

原题链接
题意:显而易见
题解:
可真是数论大综合……
首先由Fuko_Ibuki大佬给出了本题最重要的一个卡点,移个项……
c n ∗ f n = c 3 n − 6 ∗ f n − 1 ∗ f n − 2 ∗ f n − 3 c^n*f_n=c^{3n-6}*f_{n-1}*f_{n-2}*f_{n-3} cnfn=c3n6fn1fn2fn3
没看出来就再移
c n ∗ f n = c n − 1 ∗ f n − 1 ∗ c n − 2 ∗ f n − 2 ∗ c n − 3 ∗ f n − 3 c^n*f_n=c^{n-1}*f_{n-1}*c^{n-2}*f_{n-2}*c^{n-3}*f_{n-3} cnfn=cn1fn1cn2fn2cn3fn3
x n = c n ∗ f n x_n=c^n*f_n xn=cnfn
x n = x n − 1 ∗ x n − 2 ∗ x n − 3 x_n=x_{n-1}*x_{n-2}*x_{n-3} xn=xn1xn2xn3
考虑到任意 x n x_n xn均由 x 1 、 x 2 、 x 3 x_1、x_2、x_3 x1x2x3的若干次幂相乘得来
转换一下就把积变成了和
x n = x 1 k n − 1 + k n − 2 + k n − 3 ∗ x 2 k n − 1 + k n − 2 + k n − 3 ∗ x 3 k n − 1 + k n − 2 + k n − 3 x_n=x_1^{k_{n-1}+k_{n-2}+k_{n-3}}*x_2^{k_{n-1}+k_{n-2}+k_{n-3}}*x_3^{k_{n-1}+k_{n-2}+k_{n-3}} xn=x1kn1+kn2+kn3x2kn1+kn2+kn3x3kn1+kn2+kn3
k之类的只是个感性关系
好的那么把这个幂次列个表
100 1 0 0 100
010 0 1 0 010
001 0 0 1 001
111 1 1 1 111
……
显然可以用矩阵快速幂递推
矩阵就是
111 1 1 1 111
100 1 0 0 100
010 0 1 0 010
其中 1 , 1 1,1 1,1 x 3 x_3 x3的幂次, 1 , 2 1,2 1,2 x 2 x_2 x2的幂次之类的
接着又遇到一个问题
这个幂次可以大于1e18所以要取模
好在原模数是质数
所以直接欧拉降幂第一条就可以了
x n ≡ x ( n % p h i ( p ) ) ( m o d p ) x^n\equiv x^{(n\%phi(p))} (mod p) xnx(n%phi(p))(modp)
p h i ( 1 e 9 + 7 ) = 1 e 9 + 6 phi(1e9+7)=1e9+6 phi(1e9+7)=1e9+6
最后别忘了把 c n c^n cn转换成逆元移过去,解出 f n f_n fn

代码如下:

#include<bits/stdc++.h>
#define mod 1000000006
#define mod1 1000000007
using namespace std;

long long n,f1,f2,f3,c;

struct matrix
{
	long long x[4][4];
	
	void init()
	{
		memset(x,0,sizeof(x));
	}
	
	void print()
	{
		for(int i=1;i<=3;i++)
		{
			for(int j=1;j<=3;j++)
			{
				printf("%lld ",x[i][j]);
			}
			puts("");
		}
	}
};

inline matrix mul(matrix a,matrix b)
{
	matrix c;
	c.init();
	for(int i=1;i<=3;i++)
	{
		for(int j=1;j<=3;j++)
		{
			for(int k=1;k<=3;k++)
			{
				c.x[i][j]=(c.x[i][j]+(a.x[k][j]*b.x[i][k]%mod))%mod;
			}
		}
	}
	return c; 
}

inline matrix kasumi(long long b)
{
	matrix ans,c;
	ans.init(),c.init();
	ans.x[1][1]=1,ans.x[2][2]=1,ans.x[3][3]=1;
	c.x[1][1]=1,c.x[1][2]=1,c.x[1][3]=1,c.x[2][1]=1,c.x[3][2]=1;
	while(b)
	{
		if(b&1) ans=mul(ans,c);
		c=mul(c,c);
		b>>=1;
	}
	return ans;
}

inline long long kasumi1(long long a,long long b)
{
	long long ans=1ll;
	while(b)
	{
		if(b&1) ans=ans*a%mod1;
		a=a*a%mod1;
		b>>=1;
	}
	return ans;
} 

int main()
{
	scanf("%lld%lld%lld%lld%lld",&n,&f1,&f2,&f3,&c);
	f1=f1*c%mod1,f2=f2*c%mod1*c%mod1,f3=f3*c%mod1*c%mod1*c%mod1; 
	matrix tmp=kasumi(n-3);
	long long ans1=kasumi1(f1,tmp.x[1][3])%mod1*kasumi1(f2,tmp.x[1][2])%mod1*kasumi1(f3,tmp.x[1][1])%mod1;
	long long cv=kasumi1(c,mod1-2);
	long long cc=kasumi1(cv,n);
	printf("%lld\n",ans1*cc%mod1);
}
【基于Python的大麦网自动抢票工具的设计与实现】 随着互联网技术的发展,网络购票已经成为人们生活中不可或缺的一部分。尤其是在文化娱乐领域,如音乐会、演唱会、戏剧等活动中,热门演出的门票往往在开售后瞬间就被抢购一空。为了解决这个问题,本论文探讨了一种基于Python的自动抢票工具的设计与实现,旨在提高购票的成功率,减轻用户手动抢票的压力。 Python作为一种高级编程语言,因其简洁明了的语法和丰富的第三方库,成为了开发自动化工具的理想选择。Python的特性使得开发过程高效且易于维护。本论文深入介绍了Python语言的基础知识,包括数据类型、控制结构、函数以及模块化编程思想,这些都是构建抢票工具的基础。 自动化工具在现代社会中广泛应用,尤其在网络爬虫、自动化测试等领域。在抢票工具的设计中,主要利用了自动化工具的模拟用户行为、数据解析和定时任务等功能。本论文详细阐述了如何使用Python中的Selenium库来模拟浏览器操作,通过识别网页元素、触发事件,实现对大麦网购票流程的自动化控制。同时,还讨论了BeautifulSoup和requests库在抓取和解析网页数据中的应用。 大麦网作为国内知名的票务平台,其网站结构和购票流程对于抢票工具的实现至关重要。论文中介绍了大麦网的基本情况,包括其业务模式、用户界面特点以及购票流程,为工具的设计提供了实际背景。 在系统需求分析部分,功能需求主要集中在自动登录、监控余票、自动下单和异常处理等方面。抢票工具需要能够自动填充用户信息,实时监控目标演出的票务状态,并在有票时立即下单。此外,为了应对可能出现的网络延迟或服务器错误,工具还需要具备一定的错误恢复能力。性能需求则关注工具的响应速度和稳定性,要求在大量用户同时使用时仍能保持高效运行。 在系统设计阶段,论文详细描述了整体架构,包括前端用户界面、后端逻辑处理以及与大麦网交互的部分。在实现过程中,采用了多线程技术以提高并发性,确保在抢票关键环节的快速响应。此外,还引入了异常处理机制,以应对网络故障或程序错误。 测试与优化是确保抢票工具质量的关键步骤。论文中提到了不同场景下的测试策略,如压力测试、功能测试和性能测试,以验证工具的有效性和稳定性。同时,通过对抢票算法的不断优化,提高工具的成功率。 论文讨论了该工具可能带来的社会影响,包括对消费者体验的改善、对黄牛现象的抑制以及可能引发的公平性问题。此外,还提出了未来的研究方向,如增加多平台支持、优化抢票策略以及考虑云服务的集成,以进一步提升抢票工具的实用性。 本论文全面介绍了基于Python的大麦网自动抢票工具的设计与实现,从理论到实践,从需求分析到系统优化,为读者提供了一个完整的开发案例,对于学习Python编程、自动化工具设计以及理解网络购票市场的运作具有重要的参考价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值