codeforces 1043F Make It One(容斥+组合数)

3 篇文章 0 订阅
2 篇文章 0 订阅

题目链接

一个小于三十万的数最多只有七个不同的质因数,所以最多七个数
考虑取n个数使gcd为一是否有解,显然跟点分治一样,两个包含因子x的数的gcd可能是x及其倍数,于是容斥
每个gcd所存在的解数为所有是他倍数的数的数量中任取n个,接着减去所有gcd会是他倍数的情况
复杂度是调和级数,nlogn

代码如下:

#include<bits/stdc++.h>
#define mod 1000000007
using namespace std;

int a[300010],cnt[300010],n;
long long dp[300010];
long long fac[300010],inv[300010]; 

long long kasumi(long long a,long long b)
{
	long long ans=1;
	while(b)
	{
		if(b&1) ans=ans*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return ans;
}

long long c(long long x,long long y)
{
	if(y>x) return 0;
	return fac[x]*inv[x-y]%mod*inv[y]%mod;
}

int main()
{
	fac[0]=1;
	fac[1]=1;
	for(int i=2;i<=300000;i++)
	{
		fac[i]=fac[i-1]*i%mod;
	}
	inv[300000]=kasumi(fac[300000],mod-2);
	for(int i=299999;i>=1;i--)
	{
		inv[i]=inv[i+1]*(i+1)%mod;
	}
	inv[0]=1;
	scanf("%d",&n);
	int tmp;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&tmp);
		a[tmp]++;
	}
	for(int i=1;i<=300000;i++)
	{
		tmp=0;
		for(int j=i;j<=300000;j+=i)
		{
			tmp+=a[j];
		}
		cnt[i]=tmp;
	}
	for(int t=1;t<=7;t++)
	{
		memset(dp,0,sizeof(dp));
		for(int i=300000;i>=1;i--)
		{	
			dp[i]=c(cnt[i],t);
			for(int j=i*2;j<=300000;j+=i)
			{
				dp[i]=(dp[i]-dp[j]+mod)%mod;
			}
			
		}
		if(dp[1]>0)
		{
			printf("%d\n",t);
			return 0;
		}
	}
	puts("-1");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值