Codefoeces-689D Friends and Subsequences

Friends and Subsequences

time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

Mike and !Mike are old childhood rivals, they are opposite in everything they do, except programming. Today they have a problem they cannot solve on their own, but together (with you) — who knows?

Every one of them has an integer sequences a and b of length n. Being given a query of the form of pair of integers (l, r), Mike can instantly tell the value of  while !Mike can instantly tell the value of .

Now suppose a robot (you!) asks them all possible different queries of pairs of integers (l, r(1 ≤ l ≤ r ≤ n) (so he will make exactly n(n + 1) / 2 queries) and counts how many times their answers coincide, thus for how many pairs  is satisfied.

How many occasions will the robot count?

Input

The first line contains only integer n (1 ≤ n ≤ 200 000).

The second line contains n integer numbers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the sequence a.

The third line contains n integer numbers b1, b2, ..., bn ( - 109 ≤ bi ≤ 109) — the sequence b.

Output

Print the only integer number — the number of occasions the robot will count, thus for how many pairs  is satisfied.

Examples
input
Copy
6
1 2 3 2 1 4
6 7 1 2 3 2
output
Copy
2
input
Copy
3
3 3 3
1 1 1
output
Copy
0
Note

The occasions in the first sample case are:

1.l = 4,r = 4 since max{2} = min{2}.

2.l = 4,r = 5 since max{2, 1} = min{2, 3}.

There are no occasions in the second sample case since Mike will answer 3 to any query pair, but !Mike will always answer 1.

题意:给出两个长度为n的序列,求有哪些区间相同的  a区间最大值==b区间最小值

思路:预处理出ST表,然后我们来遍历1~n每次我们查询最左的符合要求的右端点,再查询出最右的符合要求的右端点。这样最右-最左就为符合的区间,累加即可。我们在查询端点时,二分查询就行。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 201000;
ll Max[maxn][30],Min[maxn][30],b[maxn],a[maxn],n;
void GetST()
{
    for(int i=1; i<=n; i++)
    {
        Max[i][0]=a[i];
        Min[i][0]=b[i];
    }
    for(int j=1; (1<<j)<=n; j++)
        for(int i=1; i+(1<<j)-1<=n; i++)
        {
            int k=j-1;
            Max[i][j]=max(Max[i][k],Max[i+(1<<k)][k]);
            Min[i][j]=min(Min[i][k],Min[i+(1<<k)][k]);
        }
}
ll getmax(int l,int r)
{
    int k=(int)(log(r-l+1)/log(2.0));
    return max(Max[l][k],Max[r-(1<<k)+1][k]);
}
ll getmin(int l,int r)
{
    int k=(int)(log(r-l+1)/log(2.0));
    return min(Min[l][k],Min[r-(1<<k)+1][k]);
}
int main()
{
    scanf("%d",&n);
    for(int i=1; i<=n; i++)
        scanf("%lld",&a[i]);
    for(int i=1; i<=n; i++)
        scanf("%lld",&b[i]);
    GetST();
    ll ans=0;
    int l,r,m;
    int idl,idr;
    for(int i=1; i<=n; i++)
    {
        l=i;
        r=n;
        idl=0,idr=0;
        while(l<=r)
        {
            m=(l+r)>>1;
            ll Maxx=getmax(i,m);
            ll Minx=getmin(i,m);
            if(Maxx==Minx)
            {
                idr=m;
                l=m+1;
            }//查询最右
            else if(Maxx<Minx)
                l=m+1;
            else r=m-1;
        }
        if(idr)
        {
            l=i;
            r=n;
            while(l<=r)
            {
                m=(l+r)>>1;
                ll Maxx=getmax(i,m);
                ll Minx=getmin(i,m);
                if(Maxx==Minx)
                {
                    idl=m;
                    r=m-1;
                }//查询最左
                else if(Maxx<Minx)
                    l=m+1;
                else r=m-1;
            }
            ans+=idr-idl+1;
        }
    }
    printf("%lld\n",ans);
}
View Code

 

 

 

PS:摸鱼怪的博客分享,欢迎感谢各路大牛的指点~

转载于:https://www.cnblogs.com/MengX/p/9134829.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值