网络层中变量存在两个问题:
- 随着层数的增多,导致变量名的增多;
- 在调用函数的时候,会重复生成变量,但他们存储的都是一样的变量。
tf.variable不能解决这个问题。
变量作用域使用tf.variable_scope和tf.get_variable完美解决了上边的这个问题。
- 网络层数很多,但一般结构就那么几种。我们使用tf.get_variable方法,变量会在前边加上作用域,类似于文件系统中的“/”。
- tf.get_variable在第二次使用某个变量时,可以用reuse=True来共享之前定义过的变量。
------总结自《深入理解tensorflow架构设计与实现原理》
tf.name_scope()和tf.variable_scope()是两个作用域,一般与两个创建/调用变量的函数tf.variable() 和tf.get_variable()搭配使用。
tf.name_scope
和 variable_scope
也是个作为上下文管理器的角色,下文管理器:意思就是,在这个管理器下做的事情,会被这个管理器管着。
一.name_scope 和 variable_scope的用途:
name_scope 和 variable_scope 主要是因为 变量共享 的需求。
变量共享主要涉及两个函数:tf.variable() 和tf.get_variable();即就是必须要在tf.variable_scope的作用域下使用tf.get_variable()函数。这里用tf.get_variable( ) 而不用tf.Variable( ),是因为前者拥有一个变量检查机制,会检测已经存在的变量是否设置为共享变量,如果已经存在的变量没有设置为共享变量,TensorFlow 运行到第二个拥有相同名字的变量的时候,就会报错。
两个创建变量的方式。如果使用tf.Variable() 的话每次都会新建变量。但是大多数时候我们是希望重用一些变量,所以就用到了get_variable(),它会去搜索变量名,有就直接用,没有再新建。名字域。既然用到变量名了,就涉及到了名字域的概念。通过不同的域来区别变量名,毕竟让我们给所有变量都取不同名字还是很辛苦。这就是为什么会有scope 的概念。name_scope 作用于操作,variable_scope 可以通过设置reuse 标志以及初始化方式来影响域下的变量,因为想要达到变量共享的效果, 就要在 tf.variable_scope()的作用域下使用 tf.get_variable() 这种方式产生和提取变量. 不像 tf.Variable() 每次都会产生新的变量, tf.get_variable() 如果遇到了已经存在名字的变量时, 它会单纯的提取这个同样名字的变量,如果不存在名字的变量再创建.
举例:
with tf.variable_scope('V1',reuse=True): a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2') with tf.variable_scope('V2',reuse=True): a3 = tf.get_variable(name='a1', shape=[1],initializer=tf.constant_initializer(1)) a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2') with tf.Session() as sess: sess.run(tf.initialize_all_variables()) print (a1.name) print (a2.name) print (a3.name) print (a4.name)
输出:
V1/a1:0 V1_14/a2:0 V2/a1:0 V2_2/a2:0 在tf.name_scope()中则没有resuse这个参数,无法实现这种操作。
二.TensorFlow中name scope和variable scope区别
TF中有两种作用域类型
命名域 (name scope),通过tf.name_scope 或 tf.op_scope创建;
变量域 (variable scope),通过tf.variable_scope 或 tf.variable_op_scope创建;
这两种作用域,对于使用tf.Variable()方式创建的变量,具有相同的效果,都会在变量名称前面,加上域名称。
对于通过tf.get_variable()方式创建的变量,只有variable scope名称会加到变量名称前面,而name scope不会作为前缀。例如 print(v1.name) # var1:0
例子:
with tf.name_scope("my_name_scope"): v1 = tf.get_variable("var1", [1], dtype=tf.float32) v2 = tf.Variable(1, name="var2", dtype=tf.float32) a = tf.add(v1, v2) print(v1.name) print(v2.name) print(a.name)
输出:
var1:0 my_name_scope/var2:0 my_name_scope/Add:0
小结:name_scope不会作为tf.get_variable变量的前缀,但是会作为tf.Variable的前缀。
with tf.variable_scope("my_variable_scope"): v1 = tf.get_variable("var1", [1], dtype=tf.float32) v2 = tf.Variable(1, name="var2", dtype=tf.float32) a = tf.add(v1, v2) print(v1.name) print(v2.name) print(a.name)
输出:
my_variable_scope/var1:0 my_variable_scope/var2:0
my_variable_scope/Add:0
小结:在variable_scope的作用域下,tf.get_variable()和tf.Variable()都加了scope_name前缀。因此,在tf.variable_scope的作用域下,通过get_variable()可以使用已经创建的变量,实现了变量的共享。
原文链接:https://blog.csdn.net/weixin_38698649/article/details/80099822