动态规划:最长公共子序列

问题:求字符串str1,字符串str2的最长公共子序列     

首先确定,状态转移方程。

      dp[i][j]表示str1[0..i-1]与str2[0..j-1]的最长公共子序列

      首先给dp[0][k]赋值,即:字符str1[0]是否属于str2[o..k]中。 它的取值为0或者1

      然后赋值dp[k][0],即:字符str2[0]是否包含在str1[0..k]中,它的取值为0或者1

      dp[i][j]=dp[i]-1[j-1]+1(如果str1[i]==str2[j])

       如果str1[i]不属于公共子序列的最后一个字符,则

       dp[i][j]=dp[i-1][j]

      如果str2[j]不属于公共子序列的最后一个字符,则

       dp[i][j]=dp[i][j-1]  

       所以,dp[i][j]=max(dp[i-1][j],dp[i][j-1]);

转载于:https://www.cnblogs.com/chenjiewhu/p/7473387.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值