所有的修改都可以在elasticsearch.yml里面修改,也可以通过api来修改。推荐用api比较灵活
1.不同分片之间的数据同步是一个很大的花费,默认是1s同步,如果我们不要求实时性,我们可以执行如下:
$ curl -XPUT 'http://localhost:9200/twitter/' -d '{ "settings" : { "index" : { "refresh_interval":"60s" } } }'
此处我们是修改为60s 其实可以改为-1s 这样就是不刷新,我们需要在查询的时候进行一次索引刷新然后再查询,这个嘛就得看你们用户能容忍多少时间长度了。
2.选择正确的存储
一般来说,如果运行的是64位操作系统,你应该选择mmapfs。如果没有运行64位操作系统,为UNIX系统选择niofs,为Windows系统选择simplefs。如果你可以容忍一个易失的存储,但希望它非常快,可以看看memory存储,它会给你最好的索引访问性能,但需要足够的内存来处理所有索引文件、索引和查询。
3.优化es的线程池
cache:这是无限制的线程池,为每个传入的请求创建一个线程。
fixed:这是一个有着固定大小的线程池,大小由size属性指定,允许你指定一个队列(使用queue_size属性指定)用来保存请求,直到有一个空闲的线程来执行请求。如果Elasticsearch无法把请求放到队列中(队列满了),该请求将被拒绝。有很多线程池(可以使用type属性指定要配置的线程类型),然而,对于性能来说,最重要的是下面几个。
index:此线程池用于索引和删除操作。它的类型默认为fixed,size默认为可用处理器的数量,队列的size默认为300。
search:此线程池用于搜索和计数请求。它的类型默认为fixed,size默认为可用处理器的数量乘以3,队列的size默认为1000。
suggest:此线程池用于建议器请求。它的类型默认为fixed,size默认为可用处理器的数量,队列的size默认为1000。
get:此线程池用于实时的GET请求。它的类型默认为fixed,size默认为可用处理器的数量,队列的size默认为1000。
bulk:你可以猜到,此线程池用于批量操作。它的类型默认为fixed,size默认为可用处理器的数量,队列的size默认为50。
percolate:此线程池用于预匹配器操作。它的类型默认为fixed,size默认为可用处理器的数量,队列的size默认为1000。
elasticsearch.yml中可以设置 :
threadpool.index.type: fixed
threadpool.index.size: 100
threadpool.index.queue_size: 500
当然可以restAPI设置
curl -XPUT 'localhost:9200/_cluster/settings' -d '{ "transient": { "threadpool.index.type": "fixed", "threadpool.index.size": 100, "threadpool.index.queue_size": 500 } }'
4.index过于庞大导致es经常奔溃
es最近老是挂掉,无缘无故,表现症状为 对于大小超过100g的index(5个分片 1e数据量左右)插入超级慢,由于机器资源有限 ,只能想出 将每一天的数据建立一个index+“yyyy-MM-dd” 这样可以有效缓解我们集群的压力,有人会说如果改成这种方案那么之前写的查询岂不是废了,其实很easy,es支持index通配符 比如你之前是logment 现在是logment2015-05-01和logment2015-05-02 现在只需要将查询的代码中index改为 logment* 就ok了 ,而且此法便于删除过期的index 写一个定时任务就ok了
我们日志的架构是这样的 logstash(client1) 采集日志到 redis 然后通过 logstash(client2) 从redis转至 elasticsearch ,logstash写入elasticsearch的时候默认就是按照每天来建立索引的 在其配置文件无需指明 index和type 即可。
此处会产生一个问题,就是logstash 自动建立索引的时候是根据格林尼治时间来建立的 正正比我们的时间 迟了8小时,我们需要在logstash的lib里面找到event.rb 然后找到 org.joda.time.DateTimeZone.UTC 格林尼治时间 改成 org.joda.time.DateTimeZone.getDefault() (获取本地时间类型 我这边运行就是中国/上海) 即可 话说logstash用的居然是大名鼎鼎的joda 果然是优秀程序 。
5. 采用G1垃圾回收机制代替默认CMS
这里我不分析cms和g1的细节区别,大内存(超过8g)下G1还是很给力的,亲测有效,用了G1 一周内一次FULLGC 都没有,哈哈
elasticsearch.in.sh 内 将
1
2
3
4
5
6
7
8
9
10
|
# Force the JVM to use IPv4 stack
if
[
"x$ES_USE_IPV4"
!=
"x"
]; then
JAVA_OPTS=
"$JAVA_OPTS -Djava.net.preferIPv4Stack=true"
fi
JAVA_OPTS=
"$JAVA_OPTS -XX:+UseParNewGC"
JAVA_OPTS=
"$JAVA_OPTS -XX:+UseConcMarkSweepGC"
JAVA_OPTS=
"$JAVA_OPTS -XX:CMSInitiatingOccupancyFraction=75"
JAVA_OPTS=
"$JAVA_OPTS -XX:+UseCMSInitiatingOccupancyOnly"
|
替换为
1
2
|
JAVA_OPTS=
"$JAVA_OPTS -XX:+UseG1GC"
JAVA_OPTS=
"$JAVA_OPTS -XX:MaxGCPauseMillis=200"
|
大功告成
顺便说句JVM调优,调优最主要目标:1.就是降低 GC 次数时间;2.降低FULLGC 几率
PS:优化代码比优化JVM实在多了
6. 清理掉没用的缓存
回忆之前的问题发现jvm调优对于老年代的回收并没有很显著的效果,随着时间的推移内存还是不够~后来才发现是es cache的问题
其实集群建立时我们是可以调整每隔节点的缓存比例、类型、者大小的
# 锁定内存,不让JVM写入swapping,避免降低ES的性能 bootstrap.mlockall: true # 缓存类型设置为Soft Reference,只有当内存不够时才会进行回收 index.cache.field.max_size: 50000 index.cache.field.expire: 10m index.cache.field.type: soft
但是如果你不想重新配置节点并且重启,你可以做一个定时任务来定时清除cache
http://10.22.2.201:9200/*/_cache/clear //清除所有索引的cache,如果对查询有实时性要求,慎用!
到了晚上资源空闲的时候我们还能合并优化一下索引
http://10.22.2.201:9200/*/_optimize
截止现在我们es集群有38亿左右数据量,比较稳定~