概率论与数理统计基础知识

#期望 ##期望的性质 期望服从线性运算规则。 \(E(ax+by+c)=aE(x)+bE(y)+c\) ##乘积的期望 一般来说,乘积的期望不等于期望的乘积,除非随机变量之间相互独立。例如,若随机变量$X$和$Y$相互独立,那么有: \(E(XY)=E(X)E(Y)\)

#方差 ##方差的定义 方差是一种特殊的期望: \(Var(x)=E((x-E(x))^2)\) ##方差的性质

  1. 反复利用期望的线性性质,可以得到方差的展开表示: \(Var(x)=E(x^2)-(E(x))^2\) (这里E(x)相当于看成是一个常数)
  2. 常数的方差为0。
  3. 方差不满足线性性质。 \(Var(ax+by)=a^2Var(x)+b^2Var(y)+2Cov(x,y)\),其中$Cov(x,y)$为$x$和$y$的协方差。
  4. 独立变量的方差 如果$x$和$y$相互独立,那么有: \(Var(ax+by)=a^2Var(x)+b^2Var(y)\) 特别的,若$a=1,b=1$,则有: \(Var(x+y)=Var(x)+Var(y)\)

#协方差 ##协方差的定义 两个随机变量的协方差定义为: \(Cov(x,y)=E((x-E(x))(y-E(y)))\),因此可以说方差是一种特殊的协方差。若$x=y$,则有 \(Cov(x,y)=Var(x)=Var(y)\) ##方差的性质

  1. 独立变量的协方差为0。
  2. 线性组合的协方差: \(Cov(a+bx,c+dy)=bdCov(x,y)\)

#相关系数 ##相关系数的定义 \(Corr(x,y)=\frac{Cov(x,y)}{\sqrt{Var(x)Var(y)}}\) ##相关系数的性质

  1. 有界性 相关系数的取值范围是-1到1,其可以看作是无量纲的协方差。
  2. 相关系数越接近于1,说明两个随机变量的正相关性越强,相关系数越接近0,说明两个随机变量越不相关,相关系数越接近于-1,说明两个随机变量的负相关性越强。

#Reference:

  1. https://blog.csdn.net/touristman5/article/details/56281887

转载于:https://www.cnblogs.com/wumh7/p/9657778.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值