基本概率公式
- 补集公式
P ( A ˉ ) = 1 − P ( A ) P(\bar{A})=1-P(A) P(Aˉ)=1−P(A) - 加法公式
P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B)=P(A)+P(B)-P(A B) P(A+B)=P(A)+P(B)−P(AB) - 减法公式
P ( A − B ) = P ( A ) − P ( A B ) = P ( A B ˉ ) P(A-B)=P(A)-P(A B)=P(A \bar{B}) P(A−B)=P(A)−P(AB)=P(ABˉ) - 条件概率
P ( B ∣ A ) = P ( A B ) P ( A ) P(B \mid A)=\frac{P(A B)}{P(A)} P(B∣A)=P(A)P(AB) - 乘法公式
P ( A B ) = P ( A ) ⋅ P ( B ∣ A ) P(A B)=P(A) \cdot P(B \mid A) P(AB)=P(A)⋅P(B∣A)
P ( A B ) = P ( B ) ⋅ P ( A ∣ B ) P(A B)=P(B) \cdot P(A \mid B) P(AB)=P(B)⋅P(A∣B) - 全概率公式
P ( B ) = ∑ i = 1 n P ( A i ) ⋅ P ( B ∣ A i ) P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) \cdot P\left(B \mid A_{i}\right) P(B)=∑i=1nP(Ai)⋅P(B∣Ai) - 贝叶斯公式
P ( A j ∣ B ) = P ( A j B ) P ( B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) ⋅ P ( B ∣ A i ) P\left(A_{j} \mid B\right)=\frac{P\left(A_{j} B\right)}{P(B)}=\frac{P\left(A_{j}\right) P\left(B \mid A_{j}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) \cdot P\left(B \mid A_{i}\right)} P(Aj∣B)=P(B)P(AjB)=∑i=1nP(Ai)⋅P(B∣Ai)P(Aj)P(B∣Aj) - 相互独立
P ( A B ) = P ( A ) ⋅ P ( B ) P(A B)=P(A) \cdot P(B) P(AB)=P(A)⋅P(B)
如果随机变量 X X X, Y Y Y相互独立,那么 g ( X ) g(X) g(X), g ( Y ) g(Y) g(Y)也相互独立
一维随机变量的分布
分布函数的应用
F ( a − 0 ) F(a-0) F(a−0)是 F ( X ) F(X) F(X)在 a a a处的左极限。
P { X ⩽ a } = F ( a ) P\{X \leqslant a\}=F(a) P{
X⩽a}=F(a)
P { X < a } = F ( a − 0 ) P\{X<a\}=F(a-0) P{
X<a}=F(a−0)
P { X = a } = F ( a ) − F ( a − 0 ) P\{X=a\}=F(a)-F(a-0) P{
X=a}=F(a)−F(a−0)
F ( x ) = P { X ⩽ x } = ∑ x i ⩽ x P { X = x i } F(x)=P\{X \leqslant x\}=\sum_{x_{i} \leqslant x} P\left\{X=x_{i}\right\} F(x)=P{
X⩽x}=∑xi⩽xP{
X=xi}
F ( x ) = P { X ⩽ x } = ∫ − ∞ x f ( t ) d t ( x ∈ R ) F(x)=P\{X \leqslant x\}=\int_{-\infty}^{x} f(t) d t(x \in R) F(x)=P{
X⩽x}=∫−∞xf(t)dt(x∈R)
P { a < X < b } = P { a ⩽ X < b } = P { a < X ⩽ b } = P { a ⩽ X ⩽ b } = ∫ a b f ( t ) d t = F ( b ) − F ( a ) P\{a<X<b\}=P\{a \leqslant X<b\}=P\{a<X \leqslant b\}=P\{a \leqslant X \leqslant b\}=\int_{a}^{b} f(t) d t=F(b)-F(a) P{
a<X<b}=P{
a⩽X<b}=P{
a<X⩽b}=P{
a⩽X⩽b}=∫abf(t)dt=F(b)−F(a)
离散型分布
伯努利分布
0-1 分布,(比如掷硬币,射箭中与不中)。
X ∼ B ( 1 , p ) P { X = k } = p k ( 1 − p ) 1 − k , ( k = 0 , 1 ) E X = p D X = p ( 1 − p ) \begin{aligned} X & \sim B(1, p) \\ P\{X=k\} &=p^{k}(1-p)^{1-k},(k=0,1) \\ E X &=p \\ D X &=p(1-p) \end{aligned} XP{ X=k}EXDX∼B(1,p)=pk(1−p)1−k,(k=0,1)=p=p(1−p)
二项分布
多次同分布试验(比如多次掷骰子,掷硬币)。
X ∼ B ( n , p ) P { X = k } = C n k p k ( 1 − p ) n − k , ( k = 0 , 1 , ⋯ , n ) E X = n p D X = n p ( 1 − p ) \begin{aligned} X & \sim B(n, p) \\ P\{X=k\} &=C_{n}^{k} p^{k}(1-p)^{n-k},(k=0,1, \cdots, n) \\ E X &=n p \\ D X &=n p(1-p) \end{aligned} XP{ X=k}EXDX∼B(n,p)=Cnkpk(1−p)n−k,(k=0,1,⋯,n)=np=np(1−p)
泊松分布
质点流量(比如一段时间内买东西的顾客数量 k 的概率)。
X ∼ P ( λ ) P { X = k } = λ k k ! e − λ E X = λ D X = λ \begin{aligned} X & \sim P(\lambda) \\ P\{X=k\} &=\frac{\lambda^{k}}{k !} e^{-\lambda} \\ E X &=\lambda \\ D X &=\lambda \end{aligned} XP{ X=k}EXDX∼P(λ)=k!λke−λ=λ=λ
几何分布
首中即停止,与几何无关,比如一直投篮知道投中为止,投篮次数 k的概率。
X ∼ G ( p ) P { X = k } = ( 1 − p ) k − 1 p E X = 1 p D X = 1 − p p 2 \begin{aligned} X & \sim G(p) \\ P\{X=k\} &=(1-p)^{k-1} p \\ E X &=\frac{1}{p} \\ D X &=\frac{1-p}{p^{2}} \end{aligned} XP{ X=k}EXDX∼G(p)=(1−p)k−1p=p1=p21−p
超几何分布
总共有 N N N 个球,其中有 M M M个是红色的,是从中不放回地取 n n n个球,其中有 k k k 个是红球的概率。
X ∼ H ( n , N , M ) P { X = k } = C M k C N − M n − k C N n , ( k ⩽ min { M , n } ) E X = n M N D X = n M N ⋅ ( 1 − M N ) ⋅ N − n N − 1 \begin{aligned} X & \sim H(n, N, M) \\ P\{X=k\} &=\frac{C_{M}^{k} C_{N-M}^{n-k}}{C_{N}^{n}},(k \leqslant \min \{M, n\}) \\ E X &=n \frac{M}{N} \\ D X &=n \frac{M}{N} \cdot\left(1-\frac{M}{N}\right) \cdot \frac{N-n}{N-1} \end{aligned} XP{ X=k}EXDX∼H(n,N,M)=CNnCMkCN−Mn−k,(k⩽min{ M,n})=nNM=nNM⋅(1−NM)⋅N−1N−n
连续型分布
均匀分布
X ∼ U ( a , b ) f ( x ) = { 1 b − a , a < x < b 0 , x = other F ( x ) = { 0 , x < a x − a b − a , a ⩽ x < b 1 , x ⩾ 0 E X = b + a 2 D X = ( b − a ) 2 12 \begin{aligned} X & \sim U(a, b) \\ f(x) &=\left\{\begin{array}{l}\frac{1}{b-a}, a<x<b \\ 0, x=\text { other }\end{array}\right.\\ F(x) &=\left\{\begin{array}{l}0, x<a \\ \frac{x-a}{b-a}, a \leqslant x<b \\ 1, x \geqslant 0\end{array}\right.\\ E X &=\frac{b+a}{2} \\ D X &=\frac{(b-a)^{2}}{12} \end{aligned} Xf(x)F(x)EXDX∼U(a,b)={ b−a1,a<x<b0,x= other =⎩⎨⎧0,x<ab−ax−a,a⩽x<b1,x⩾0=2b+a=12(b−a)2
指数分布
质点间隔时间(与泊松分布相对,比如买东西的两个顾客之间连续的时间间隔)。
X ∼ E ( λ ) f ( x ) = { λ e − λ x , x > 0 0 , x ⩽ 0 \begin{aligned} X & \sim E(\lambda) \\ f(x) &=\left\{\begin{array}{l} \lambda e^{-\lambda x}, x>0 \\ 0, x \leqslant 0 \end{array}\right. \end{aligned} Xf(x)∼E(λ)={
λe−λx,x>00,x⩽0
F ( x ) = { 1 − e − λ x , x > 0 0 , x ⩽ 0 ( λ > 0 ) E X = 1 λ D X = 1 λ 2 \begin{aligned} F(x) &=\left\{\begin{array}{l} 1-e^{-\lambda x}, x>0 \\ 0, x \leqslant 0 \\ (\lambda>0) \end{array}\right.\\ E X &=\frac{1}{\lambda} \\ D X &=\frac{1}{\lambda^{2}} \end{aligned} F(x)EXDX=⎩⎨⎧1−e−λx,x>00,x⩽0(λ>0)=λ1=λ21
正态分布
世间万物的终极法则,中心极限定理的归宿。
X ∼ N ( μ , σ 2 ) f ( x ) = 1 2 π σ e − 1 2 ( x − μ ) 2 σ 2 E X = μ D X = σ 2 F ( x ) = P { X ⩽ x } = Φ ( x − μ σ ) 1 = F ( μ − x ) + F ( μ + x ) P { a ⩽ X ⩽ b } = Φ ( b − μ σ ) − Φ ( a − μ σ ) a X + b ∼ N ( a μ + b , a 2 σ 2 ) \begin{aligned} X & \sim N\left(\mu, \sigma^{2}\right) \\ f(x) &=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}} \\ E X &=\mu \\ D X &=\sigma^{2} \\ F(x) &=P\{X \leqslant x\}=\Phi\left(\frac{x-\mu}{\sigma}\right) \\ 1 &=F(\mu-x)+F(\mu+x) \\ P\{a \leqslant X \leqslant b\} &=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right) \\ a X+b & \sim N\left(a \mu+b, a^{2} \sigma^{2}\right) \end{aligned} Xf(x)EXDXF(x)1P{
a⩽X⩽b}aX+b∼N(μ,σ2)=2πσ1e−21σ2(x−μ)2=μ=σ2=P{
X⩽x}=Φ(σx−μ)=F(μ−x)+F(μ+x)=Φ(σb−μ)−Φ(σa−μ)∼N(aμ+b,a2σ2)
标准正态分布
X ∼ N ( 0 , 1 ) f ( x ) = 1 2 π e − 1 2 x 2 Φ ( 0 ) = 1 2 Φ ( − x ) = 1 − Φ ( x ) E X = 0 D X = 1 \begin{aligned} X & \sim N(0,1) \\ f(x) &=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \\ \Phi(0) &=\frac{1}{2} \\ \Phi(-x) &=1-\Phi(x) \\ E X &=0 \\ D X &=1 \end{aligned} Xf(x)Φ(0)Φ(−x)EXDX∼N(0,1)=2π1e−21x2=21=1−Φ(x)=0=1
多维随机变量的分布
联合分布函数
F ( x , y ) = P { X ⩽ x , Y ⩽ y } = ∑ x i ⩽ x ∑ y j ⩽ y p i j F(x, y)=P\{X \leqslant x, Y \leqslant y\}=\sum_{x_{i} \leqslant x} \sum_{y_{j} \leqslant y} p_{i j} F(x,y)=P{ X⩽x,Y⩽y}=∑xi⩽x∑