概率论与数理统计基础知识整理

基本概率公式

  • 补集公式
    P ( A ˉ ) = 1 − P ( A ) P(\bar{A})=1-P(A) P(Aˉ)=1P(A)
  • 加法公式
    P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B)=P(A)+P(B)-P(A B) P(A+B)=P(A)+P(B)P(AB)
  • 减法公式
    P ( A − B ) = P ( A ) − P ( A B ) = P ( A B ˉ ) P(A-B)=P(A)-P(A B)=P(A \bar{B}) P(AB)=P(A)P(AB)=P(ABˉ)
  • 条件概率
    P ( B ∣ A ) = P ( A B ) P ( A ) P(B \mid A)=\frac{P(A B)}{P(A)} P(BA)=P(A)P(AB)
  • 乘法公式
    P ( A B ) = P ( A ) ⋅ P ( B ∣ A ) P(A B)=P(A) \cdot P(B \mid A) P(AB)=P(A)P(BA)
    P ( A B ) = P ( B ) ⋅ P ( A ∣ B ) P(A B)=P(B) \cdot P(A \mid B) P(AB)=P(B)P(AB)
  • 全概率公式
    P ( B ) = ∑ i = 1 n P ( A i ) ⋅ P ( B ∣ A i ) P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) \cdot P\left(B \mid A_{i}\right) P(B)=i=1nP(Ai)P(BAi)
  • 贝叶斯公式
    P ( A j ∣ B ) = P ( A j B ) P ( B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) ⋅ P ( B ∣ A i ) P\left(A_{j} \mid B\right)=\frac{P\left(A_{j} B\right)}{P(B)}=\frac{P\left(A_{j}\right) P\left(B \mid A_{j}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) \cdot P\left(B \mid A_{i}\right)} P(AjB)=P(B)P(AjB)=i=1nP(Ai)P(BAi)P(Aj)P(BAj)
  • 相互独立
    P ( A B ) = P ( A ) ⋅ P ( B ) P(A B)=P(A) \cdot P(B) P(AB)=P(A)P(B)

  如果随机变量 X X X Y Y Y相互独立,那么 g ( X ) g(X) g(X) g ( Y ) g(Y) g(Y)也相互独立

一维随机变量的分布

分布函数的应用

   F ( a − 0 ) F(a-0) F(a0) F ( X ) F(X) F(X) a a a处的左极限。

P { X ⩽ a } = F ( a ) P\{X \leqslant a\}=F(a) P{ Xa}=F(a)
P { X < a } = F ( a − 0 ) P\{X<a\}=F(a-0) P{ X<a}=F(a0)
P { X = a } = F ( a ) − F ( a − 0 ) P\{X=a\}=F(a)-F(a-0) P{ X=a}=F(a)F(a0)
F ( x ) = P { X ⩽ x } = ∑ x i ⩽ x P { X = x i } F(x)=P\{X \leqslant x\}=\sum_{x_{i} \leqslant x} P\left\{X=x_{i}\right\} F(x)=P{ Xx}=xixP{ X=xi}
F ( x ) = P { X ⩽ x } = ∫ − ∞ x f ( t ) d t ( x ∈ R ) F(x)=P\{X \leqslant x\}=\int_{-\infty}^{x} f(t) d t(x \in R) F(x)=P{ Xx}=xf(t)dt(xR)
P { a < X < b } = P { a ⩽ X < b } = P { a < X ⩽ b } = P { a ⩽ X ⩽ b } = ∫ a b f ( t ) d t = F ( b ) − F ( a ) P\{a<X<b\}=P\{a \leqslant X<b\}=P\{a<X \leqslant b\}=P\{a \leqslant X \leqslant b\}=\int_{a}^{b} f(t) d t=F(b)-F(a) P{ a<X<b}=P{ aX<b}=P{ a<Xb}=P{ aXb}=abf(t)dt=F(b)F(a)

离散型分布

伯努利分布

  0-1 分布,(比如掷硬币,射箭中与不中)。

X ∼ B ( 1 , p ) P { X = k } = p k ( 1 − p ) 1 − k , ( k = 0 , 1 ) E X = p D X = p ( 1 − p ) \begin{aligned} X & \sim B(1, p) \\ P\{X=k\} &=p^{k}(1-p)^{1-k},(k=0,1) \\ E X &=p \\ D X &=p(1-p) \end{aligned} XP{ X=k}EXDXB(1,p)=pk(1p)1k,(k=0,1)=p=p(1p)

二项分布

  多次同分布试验(比如多次掷骰子,掷硬币)。

X ∼ B ( n , p ) P { X = k } = C n k p k ( 1 − p ) n − k , ( k = 0 , 1 , ⋯   , n ) E X = n p D X = n p ( 1 − p ) \begin{aligned} X & \sim B(n, p) \\ P\{X=k\} &=C_{n}^{k} p^{k}(1-p)^{n-k},(k=0,1, \cdots, n) \\ E X &=n p \\ D X &=n p(1-p) \end{aligned} XP{ X=k}EXDXB(n,p)=Cnkpk(1p)nk,(k=0,1,,n)=np=np(1p)

泊松分布

  质点流量(比如一段时间内买东西的顾客数量 k 的概率)。

X ∼ P ( λ ) P { X = k } = λ k k ! e − λ E X = λ D X = λ \begin{aligned} X & \sim P(\lambda) \\ P\{X=k\} &=\frac{\lambda^{k}}{k !} e^{-\lambda} \\ E X &=\lambda \\ D X &=\lambda \end{aligned} XP{ X=k}EXDXP(λ)=k!λkeλ=λ=λ

几何分布

  首中即停止,与几何无关,比如一直投篮知道投中为止,投篮次数 k的概率。

X ∼ G ( p ) P { X = k } = ( 1 − p ) k − 1 p E X = 1 p D X = 1 − p p 2 \begin{aligned} X & \sim G(p) \\ P\{X=k\} &=(1-p)^{k-1} p \\ E X &=\frac{1}{p} \\ D X &=\frac{1-p}{p^{2}} \end{aligned} XP{ X=k}EXDXG(p)=(1p)k1p=p1=p21p

超几何分布

  总共有 N N N 个球,其中有 M M M个是红色的,是从中不放回地取 n n n个球,其中有 k k k 个是红球的概率。

X ∼ H ( n , N , M ) P { X = k } = C M k C N − M n − k C N n , ( k ⩽ min ⁡ { M , n } ) E X = n M N D X = n M N ⋅ ( 1 − M N ) ⋅ N − n N − 1 \begin{aligned} X & \sim H(n, N, M) \\ P\{X=k\} &=\frac{C_{M}^{k} C_{N-M}^{n-k}}{C_{N}^{n}},(k \leqslant \min \{M, n\}) \\ E X &=n \frac{M}{N} \\ D X &=n \frac{M}{N} \cdot\left(1-\frac{M}{N}\right) \cdot \frac{N-n}{N-1} \end{aligned} XP{ X=k}EXDXH(n,N,M)=CNnCMkCNMnk,(kmin{ M,n})=nNM=nNM(1NM)N1Nn

连续型分布

均匀分布

X ∼ U ( a , b ) f ( x ) = { 1 b − a , a < x < b 0 , x =  other  F ( x ) = { 0 , x < a x − a b − a , a ⩽ x < b 1 , x ⩾ 0 E X = b + a 2 D X = ( b − a ) 2 12 \begin{aligned} X & \sim U(a, b) \\ f(x) &=\left\{\begin{array}{l}\frac{1}{b-a}, a<x<b \\ 0, x=\text { other }\end{array}\right.\\ F(x) &=\left\{\begin{array}{l}0, x<a \\ \frac{x-a}{b-a}, a \leqslant x<b \\ 1, x \geqslant 0\end{array}\right.\\ E X &=\frac{b+a}{2} \\ D X &=\frac{(b-a)^{2}}{12} \end{aligned} Xf(x)F(x)EXDXU(a,b)={ ba1,a<x<b0,x= other =0,x<abaxa,ax<b1,x0=2b+a=12(ba)2

指数分布

  质点间隔时间(与泊松分布相对,比如买东西的两个顾客之间连续的时间间隔)。

X ∼ E ( λ ) f ( x ) = { λ e − λ x , x > 0 0 , x ⩽ 0 \begin{aligned} X & \sim E(\lambda) \\ f(x) &=\left\{\begin{array}{l} \lambda e^{-\lambda x}, x>0 \\ 0, x \leqslant 0 \end{array}\right. \end{aligned} Xf(x)E(λ)={ λeλx,x>00,x0
F ( x ) = { 1 − e − λ x , x > 0 0 , x ⩽ 0 ( λ > 0 ) E X = 1 λ D X = 1 λ 2 \begin{aligned} F(x) &=\left\{\begin{array}{l} 1-e^{-\lambda x}, x>0 \\ 0, x \leqslant 0 \\ (\lambda>0) \end{array}\right.\\ E X &=\frac{1}{\lambda} \\ D X &=\frac{1}{\lambda^{2}} \end{aligned} F(x)EXDX=1eλx,x>00,x0(λ>0)=λ1=λ21

正态分布

  世间万物的终极法则,中心极限定理的归宿。
X ∼ N ( μ , σ 2 ) f ( x ) = 1 2 π σ e − 1 2 ( x − μ ) 2 σ 2 E X = μ D X = σ 2 F ( x ) = P { X ⩽ x } = Φ ( x − μ σ ) 1 = F ( μ − x ) + F ( μ + x ) P { a ⩽ X ⩽ b } = Φ ( b − μ σ ) − Φ ( a − μ σ ) a X + b ∼ N ( a μ + b , a 2 σ 2 ) \begin{aligned} X & \sim N\left(\mu, \sigma^{2}\right) \\ f(x) &=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}} \\ E X &=\mu \\ D X &=\sigma^{2} \\ F(x) &=P\{X \leqslant x\}=\Phi\left(\frac{x-\mu}{\sigma}\right) \\ 1 &=F(\mu-x)+F(\mu+x) \\ P\{a \leqslant X \leqslant b\} &=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right) \\ a X+b & \sim N\left(a \mu+b, a^{2} \sigma^{2}\right) \end{aligned} Xf(x)EXDXF(x)1P{ aXb}aX+bN(μ,σ2)=2π σ1e21σ2(xμ)2=μ=σ2=P{ Xx}=Φ(σxμ)=F(μx)+F(μ+x)=Φ(σbμ)Φ(σaμ)N(aμ+b,a2σ2)

标准正态分布

X ∼ N ( 0 , 1 ) f ( x ) = 1 2 π e − 1 2 x 2 Φ ( 0 ) = 1 2 Φ ( − x ) = 1 − Φ ( x ) E X = 0 D X = 1 \begin{aligned} X & \sim N(0,1) \\ f(x) &=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \\ \Phi(0) &=\frac{1}{2} \\ \Phi(-x) &=1-\Phi(x) \\ E X &=0 \\ D X &=1 \end{aligned} Xf(x)Φ(0)Φ(x)EXDXN(0,1)=2π 1e21x2=21=1Φ(x)=0=1

多维随机变量的分布

联合分布函数

F ( x , y ) = P { X ⩽ x , Y ⩽ y } = ∑ x i ⩽ x ∑ y j ⩽ y p i j F(x, y)=P\{X \leqslant x, Y \leqslant y\}=\sum_{x_{i} \leqslant x} \sum_{y_{j} \leqslant y} p_{i j} F(x,y)=P{ Xx,Yy}=xix

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值