faster RCNN(keras版本)代码讲解(3)-训练流程详情

转载:https://blog.csdn.net/u011311291/article/details/81121519

https://blog.csdn.net/qq_34564612/article/details/79138876

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011311291/article/details/81121519

faster RCNN(keras版本)代码讲解博客索引:
1.faster RCNN(keras版本)代码讲解(1)-概述
2.faster RCNN(keras版本)代码讲解(2)-数据准备
3.faster RCNN(keras版本)代码讲解(3)-训练流程详情
4.faster RCNN(keras版本)代码讲解(4)-共享卷积层详情
5.faster RCNN(keras版本)代码讲解(5)-RPN层详情
6.faster RCNN(keras版本)代码讲解(6)-ROI Pooling层详情

一.整体流程概述
1.输入参数,其实输入1个就行了(D:\tempFile\VOCdevkit),另外一个resnet权重只是为了加快训练,如图:
这里写图片描述
2.从VOC2007数据集中读取数据,变成想要的数据格式
3.定义生成数据的迭代器
4.定义3个网络,一个是resnet共享卷积层,一个rpn层,一个分类器层
5.进入迭代,每次只训练一张图片
6.是否要进行图片增强
7.根据特征图和定义框的比例,IOU等计算出y_train值,作为网络的label
8.训练rpn层,输出物体,和物体框的坐标
9.然后再进行分类器层层的训练

二.代码(关键部位已经给出注释)

from __future__ import division
import random
import pprint
import sys import time import numpy as np from optparse import OptionParser import pickle from keras import backend as K from keras.optimizers import Adam, SGD, RMSprop from keras.layers import Input from keras.models import Model from keras_frcnn import config, data_generators from keras_frcnn import losses as losses import keras_frcnn.roi_helpers as roi_helpers from keras.utils import generic_utils sys.setrecursionlimit(40000) parser = OptionParser() parser.add_option("-p", "--path", dest="train_path", help="Path to training data.") parser.add_option("-o", "--parser", dest="parser", help="Parser to use. One of simple or pascal_voc", default="pascal_voc") parser.add_option("-n", "--num_rois", type="int", dest="num_rois", help="Number of RoIs to process at once.", default=32) parser.add_option("--network", dest="network", help="Base network to use. Supports vgg or resnet50.", default='resnet50') parser.add_option("--hf", dest="horizontal_flips", help="Augment with horizontal flips in training. (Default=false).", action="store_true", default=False) parser.add_option("--vf", dest="vertical_flips", help="Augment with vertical flips in training. (Default=false).", action="store_true", default=False) parser.add_option("--rot", "--rot_90", dest="rot_90", help="Augment with 90 degree rotations in training. (Default=false).", action="store_true", default=False) parser.add_option("--num_epochs", type="int", dest="num_epochs", help="Number of epochs.", default=2000) parser.add_option("--config_filename", dest="config_filename", help= "Location to store all the metadata related to the training (to be used when testing).", default="config.pickle") parser.add_option("--output_weight_path", dest="output_weight_path", help="Output path for weights.", default='./model_frcnn.hdf5') parser.add_option("--input_weight_path", dest="input_weight_path", help="Input path for weights. If not specified, will try to load default weights provided by keras.") (options, args) = parser.parse_args() if not options.train_path: # if filename is not given parser.error('Error: path to training data must be specified. Pass --path to command line') if options.parser == 'pascal_voc': from keras_frcnn.pascal_voc_parser import get_data elif options.parser == 'simple': from keras_frcnn.simple_parser import get_data else: raise ValueError("Command line option parser must be one of 'pascal_voc' or 'simple'") # pass the settings from the command line, and persist them in the config object C = config.Config() C.use_horizontal_flips = bool(options.horizontal_flips) C.use_vertical_flips = bool(options.vertical_flips) C.rot_90 = bool(options.rot_90) C.model_path = options.output_weight_path C.num_rois = int(options.num_rois) #有基于VGG和resnet两种网络模型 if options.network == 'vgg': C.network = 'vgg' from keras_frcnn import vgg as nn elif options.network == 'resnet50': from keras_frcnn import resnet as nn C.network = 'resnet50' else: print('Not a valid model') raise ValueError # check if weight path was passed via command line if options.input_weight_path: C.base_net_weights = options.input_weight_path else: # set the path to weights based on backend and model C.base_net_weights = nn.get_weight_path() all_imgs, classes_count, class_mapping = get_data(options.train_path) print(len(all_imgs)) #所有图片的信息,图片名称,位置等 print(len(classes_count)) #dict,类别:数量,例如'chair': 1432 print(len(class_mapping)) #dict,各个类别对应的标签向量,0-19,例如chair:0,car:1 #再加入'背景'这个类别 if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) C.class_mapping = class_mapping # 将class_mapping中的key和value对调 inv_map = {v: k for k, v in class_mapping.items()} print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) config_output_filename = options.config_filename with open(config_output_filename, 'wb') as config_f: pickle.dump(C,config_f) print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(config_output_filename)) # shuffle数据 random.shuffle(all_imgs) num_imgs = len(all_imgs) # 将all_imgs分为训练集和测试集 train_imgs = [s for s in all_imgs if s['imageset'] == 'trainval'] val_imgs = [s for s in all_imgs if s['imageset'] == 'test'] print('Num train samples {}'.format(len(train_imgs))) print('Num val samples {}'.format(len(val_imgs))) # 生成anchor data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length, K.image_dim_ordering(), mode='train') # data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length, K.image_dim_ordering(), mode='train') data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, C, nn.get_img_output_length,K.image_dim_ordering(), mode='val') #查看后端是th还是tf,纠正输入方式 if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) else: input_shape_img = (None, None, 3) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) # define the base network (resnet here, can be VGG, Inception, etc) #定义nn的输入层,还有faster rcnn共享卷积层 shared_layers = nn.nn_base(img_input, trainable=True) print("shared_layers",shared_layers.shape) # define the RPN, built on the base layers #获取anchor的个数,3重基准大小快,3种比例框,3*3=9 num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) #定义rpn层,return [x_class, x_regr, base_layers] rpn = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(shared_layers, roi_input, C.num_rois, nb_classes=len(classes_count), trainable=True) #定义rpn模型的输入和输出一个框2分类(最后使用的sigmod而不是softmax)和框的回归 model_rpn = Model(img_input, rpn[:2]) #定义classifier的输入和输出 model_classifier = Model([img_input, roi_input], classifier) # this is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) try: print('loading weights from {}'.format(C.base_net_weights)) model_rpn.load_weights(C.base_net_weights, by_name=True) model_classifier.load_weights(C.base_net_weights, by_name=True) except: print('Could not load pretrained model weights. Weights can be found in the keras application folder \ https://github.com/fchollet/keras/tree/master/keras/applications') optimizer = Adam(lr=1e-5) optimizer_classifier = Adam(lr=1e-5) model_rpn.compile(optimizer=optimizer, loss=[losses.rpn_loss_cls(num_anchors), losses.rpn_loss_regr(num_anchors)]) model_classifier.compile(optimizer=optimizer_classifier, loss=[losses.class_loss_cls, losses.class_loss_regr(len(classes_count)-1)], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) model_all.compile(optimizer='sgd', loss='mae') epoch_length = 1000 num_epochs = int(options.num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} print('Starting training') vis = True for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose: mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor))/len(rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print('Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print('RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.') print("生成data_gen_train") #X为经过最小边600的比例变换的原始图像,Y为[所有框位置的和类别(正例还是反例),所有框的前36层为位置和后36层(框和gt的比值)],img_data增强图像后的图像信息 #那么RPN的reg输出也是比值 X, Y, img_data = next(data_gen_train) print(X.shape,Y[0].shape,Y[1].shape) loss_rpn = model_rpn.train_on_batch(X, Y) print("loss_rpn",len(loss_rpn)) print("loss_rpn0",loss_rpn[0]) print("loss_rpn1",loss_rpn[1]) print("loss_rpn2",loss_rpn[2]) P_rpn = model_rpn.predict_on_batch(X) # print("P_rpn_cls",P_rpn[0].reshape((P_rpn[0].shape[1],P_rpn[0].shape[2],P_rpn[0].shape[3]))[:,:,0]) print("P_rpn_cls",P_rpn[0].shape) print("P_rpn_reg",P_rpn[1].shape) #获得最终选中的框 R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format #再对回归出来的框进行一次iou的计算,再一次过滤,只保留bg框和物体框 #X2 from (x1,y1,x2,y2) to (x,y,w,h) #Y1为每个框对应类别标签,one-host编码 #Y2为每个框和gt的比值,(x,x,160),前80表示框是否正确,后80为20个类别可能的框 X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, C, class_mapping) print("X2",X2.shape) # print("X2_0",X2[0,0,:]) # print("X2_1",X2[0,1,:]) print("Y1",Y1.shape) print("Y2",Y2.shape) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue #选出正例还是反例的index,背景的为反例,物体为正例 neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) print("neg_samples",len(neg_samples[0])) print("pos_samples",len(pos_samples[0])) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) #num_rois=32,正例要求小于num_rois//2,其它全部由反例填充 if C.num_rois > 1: if len(pos_samples) < C.num_rois//2: selected_pos_samples = pos_samples.tolist() print("selected_pos_samples",len(selected_pos_samples)) else: selected_pos_samples = np.random.choice(pos_samples, C.num_rois//2, replace=False).tolist() print("selected_pos_samples",len(selected_pos_samples)) try: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist() print("selected_neg_samples",len(selected_neg_samples)) except: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist() print("selected_neg_samples",len(selected_neg_samples)) sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) print("sel_samples",len(sel_samples)) print("sel_samples",sel_samples) loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) # P_classifier = model_classifier.predict([X, X2[:, sel_samples, :]]) # #[out_class, out_regr] # print("P_classifier_out_class",P_classifier[0].shape) # print("P_classifier_out_regr",P_classifier[1].shape) # import cv2 # cv2.waitKey(0) losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] iter_num += 1 progbar.update(iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))]) if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if C.verbose: print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(mean_overlapping_bboxes)) print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format(loss_class_cls)) print('Loss Detector regression: {}'.format(loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if C.verbose: print('Total loss decreased from {} to {}, saving weights'.format(best_loss,curr_loss)) best_loss = curr_loss model_all.save_weights(C.model_path) break except Exception as e: print('Exception: {}'.format(e)) continue print('Training complete, exiting.')

转载于:https://www.cnblogs.com/shuimuqingyang/p/10102741.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值