MLP神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数

神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数

 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013421629/article/details/78329191

当训练集确定之后,输入层结点数和输出层结点数随之而确定,首先遇到的一个十分重要而又困难的问题是如何优化隐层结点数和隐层数。实验表明,如果隐层结点数过少,网络不能具有必要的学习能力和信息处理能力。反之,若过多,不仅会大大增加网络结构的复杂性(这一点对硬件实现的网络尤其重要),网络在学习过程中更易陷入局部极小点,而且会使网络的学习速度变得很慢。隐层结点数的选择问题一直受到神经网络研究工作者的高度重视。

方法1: 
fangfaGorman指出隐层结点数s与模式数N的关系是:s=log2N;

方法二: 
Kolmogorov定理表明,隐层结点数s=2n+1(n为输入层结点数);

方法三: 
s=sqrt(0.43mn+0.12nn+2.54m+0.77n+0.35)+0.51 
(m是输入层的个数,n是输出层的个数)。

转载于:https://www.cnblogs.com/shuimuqingyang/p/10228287.html

### 多层感知器 (MLP) 的构建与应用 #### 什么是多层感知器? 多层感知器(Multi-Layer Perceptron, MLP)是一种前馈型的人工神经网络,它由多个层次的节点构成,这些节点通过加权连接形成网络结构。每一层中的节点仅与其相邻层的节点相连,而不与其他层内的节点直接交互[^1]。 #### 基本组成部分 - **输入层**:负责接收外部数据并将其传递给后续隐藏层。 - **隐藏层**:位于输入层和输出层之间的一层或多层神经元集合。它们执行特征提取和转换操作,从而能够捕捉复杂的数据模式[^2]。 - **输出层**:提供最终的结果或预测值,其形式取决于具体的应用场景(分类、回归等)。 #### 数学表示 假设我们有一个具有两层隐藏层MLP模型,则可以按照如下方式描述该过程: 对于第 \( l \)-th 层上的任意一个单元 \( j \),其激活函数通常采用非线性的Sigmoid或者ReLU等形式来增加表达能力。设权重矩阵为 \( W^{[l]} \in R^{n_{l} \times n_{l-1}}\) 和偏置向量为 \( b^{[l]} \in R^{n_l}\), 则有: \[ z_j^{[l]} = w_j^{T[l]}a^{[l-1]} + b_j^{[l]} \] 其中, \( a^{[0]}=x \) 以及, \[ a_j^{[l]}=\sigma(z_j^{[l]}) \] 这里,\( z_j^{[l]} \) 表示第 \( l \) 层第 \( j \) 个神经元接收到的总输入信号; 而 \( a_j^{[l]} \) 是经过激活后的输出响应;最后,\( σ(\cdot)\ ) 可能代表任何选定类型的平滑阶跃功能比如logistic sigmoid 或者修正版 ReLU 函数等等[^3]. #### 实现方法 下面展示如何利用Python编程语言配合TensorFlow框架创建这样一个基本版本的双隐含层数目固定的全连通DNN架构实例代码片段作为示范用途之一: ```python import tensorflow as tf from tensorflow.keras import layers, models def create_mlp_model(input_dim, hidden_units_per_layer=392, num_hidden_layers=2, output_dim=10): model = models.Sequential() # First Hidden Layer model.add(layers.Dense(hidden_units_per_layer, activation='relu', input_shape=(input_dim,))) # Additional Hidden Layers for _ in range(num_hidden_layers - 1): model.add(layers.Dense(hidden_units_per_layer, activation='relu')) # Output Layer with softmax for classification tasks. model.add(layers.Dense(output_dim, activation='softmax')) return model # Example Usage model = create_mlp_model(input_dim=784, hidden_units_per_layer=392, num_hidden_layers=2, output_dim=10) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) print(model.summary()) ``` 此脚本定义了一个接受参数自定义大小的功能模块化设计思路下的标准MLP类对象生成接口函数create_mlp_model() ,允许灵活调整各超参设定项数值范围以便适应不同规模的实际业务需求环境当中去部署实施测试验证效果表现情况的好坏程度差异对比分析研究工作开展起来更加便捷高效省事不少呢!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值