faster RCNN(keras版本)代码讲解博客索引:
1.faster RCNN(keras版本)代码讲解(1)-概述
2.faster RCNN(keras版本)代码讲解(2)-数据准备
3.faster RCNN(keras版本)代码讲解(3)-训练流程详情
4.faster RCNN(keras版本)代码讲解(4)-共享卷积层详情
5.faster RCNN(keras版本)代码讲解(5)-RPN层详情
6.faster RCNN(keras版本)代码讲解(6)-ROI Pooling层详情
一.共享卷积层,有几点注意一下
1.其实作用就是利用之前已经训练好的卷积层,具有更好的物体敏感性,能够对图片做更好的特征提取
2.这里使用的VGG和ResNet,这两个网络的权重可以在网络上下载下来
3.这里有点注意就是VGG和ResNet不一定全拿里面网络,比如ResNet只拿了前面4层卷积,所以在输入图和特征的大小为16:1
4.VGG和ResNet里面定义的网络,例如卷积层,残差块等可以从keras-master\keras\applications\vgg或者ResNet中拿,然后不要改里面层的名称
在使用的时候直接load_weights(C.base_net_weights, by_name=True)就OK了
#有基于VGG和resnet两种网络模型
if options.network == 'vgg':
C.network = 'vgg'
from keras_frcnn import vgg as nn
elif options.network == 'resnet50':
from keras_frcnn import resnet as nn
C.network = 'resnet50'
shared_layers = nn.nn_base(img_input, trainable=True)