GAIN: Missing Data Imputation using Generative Adversarial Nets(基于生成对抗网络的缺失数据填补)论文详解

本文深入探讨了使用生成对抗网络(GAN)处理缺失数据的方法——GAIN。介绍了背景,包括缺失数据的类型和填补算法,详细阐述了GAIN的网络架构、生成器模型、判别器模型以及提示向量的概念。文章强调了GAIN如何通过不断优化,寻找最佳填补方案,并预告了后续的代码实现分享。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们一直被缺失的数据包围着。长期以来,统计分析中因数据缺失而产生的问题一直被掩盖着。这些时代现在正在慢慢结束。在过去的几十年中,处理缺失数据的一系列技术已经大大扩展。本专题将介绍利用生成对抗网络进行缺失数据填补,欢迎关注。

一、背景分析

原始论文链接:GAIN: Missing Data Imputation using Generative Adversarial Nets

1.1 缺失数据

Rubin(1976. “Inference and Missing Data.” Biometrika 63 (3): 581–90.)将缺失数据问题分为三类。

  • 如果所有情况下缺失的概率都相同,则数据称为完全随机缺失(missing completely at random,MCAR)。这实际上意味着数据缺失的原因与数据无关。MCAR的一个例子是电池耗尽的称重秤。它在所有情况下缺失概率都一样;
  • 如果缺失数据仅取决于观测变量,则称为随机缺失(missing at random,MAR)。MAR是一个比MCAR更广泛的类别。例如,当放置在柔软表面上
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wendy_ya

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值