树上两点期望距离

Problem

求树上两点之间的期望距离。

Solution

设d[i]为i节点的度数。

fa[i]为i节点的父亲。

我们对于两种不同的走法分别考虑。

Part1:儿子到父亲

设此时期望步数为f[i]。

显然,只会有两种情况:

1.直接一步走到父亲。

2.先走到自己的儿子,再走回自己,再走到父亲。

对于情况1.概率为$ \frac{1}{d[i]}$ ,步数为1,期望为 $ \frac{1}{d[i]}$。

对于情况2.分步考虑:

\(1^{st}\) :走到儿子,发生概率为 $ \frac{d[i]-1}{d[i]}$ ,步数为1,期望为$ \frac{d[i]-1}{d[i]}$
\(2^{nd}\) :儿子走到自己,期望为 $ \sum\limits_{j∈i的儿子}\frac {f[j]}{d[i]}$
\(3^{rd}\) :自己走到父亲,期望为 $ \frac{(d[i]-1)×f[i]}{d[i]}$

综上,我们有:
\[ f[i]=\frac{1+\sum\limits_{j∈i的儿子}{(f[j]+f[i]+1)}}{d[i]} \]
移项化简之后我们得到:
\[ f[i]=d[i]+\sum\limits_{j∈i的儿子}f[j] \]

Part2:父亲到儿子。

设此时期望步数为g[i]。

那么,我们有三种情况

1.直接跳到指定的儿子。

2.跳到父亲的父亲,再回到该点,再到达指定儿子。

3.跳到另一个儿子,再跳回来,再到达指定儿子。

还是像f数组一样讨论即可。
\[ g[i] = \frac{1+(1+g[fa[i]]+g[i])+\sum\limits_{son!=i}{(1+f[son]+g[i])}}{d[i]} \]
化简后:
\[ g[i]=g[fa[i]]+d[fa[i]]+\sum\limits_{son!=i}f[son] \]
好了,两种情况都考虑完之后,就可以算距离了。

距离计算

对于给定的u--->v的路径,我们可以拆成两条:\(u \to LCA\); \(LCA\to v\)

其中对于第一条路径,肯定都是向上走,另一条则是向下的。

所以:
\[ ans=\sum\limits_{i∈(u\to LCA)}f[i]+\sum\limits_{i∈(u\to LCA)}g[i]-f[LCA]-g[LCA] \]
记一个树上前缀和即可。

Code

#include <bits/stdc++.h>

using namespace std;

#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#define mp make_pair
#define fst first
#define snd second

template<typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }

inline int read(){
    int res = 0, fl = 1;
    char r = getchar();
    for (; !isdigit(r); r = getchar()) if(r == '-') fl = -1;
    for (; isdigit(r); r = getchar()) res = (res << 3) + (res << 1) + r - 48;
    return res * fl;
}
typedef long long LL;
typedef pair<int, int> pii;
const int Maxn = 5e4 + 10;
int fa[Maxn][17], dep[Maxn];
LL up[Maxn], down[Maxn];
vector <int> g[Maxn];
void clean(int n){
    for (int i = 1; i <= n; ++i) g[i].clear();
}
void dfsu(int now, int pa){
    up[now] = g[now].size();
    for (int i = g[now].size() - 1; i >= 0; --i){
        int nxt = g[now][i];
        if(nxt == pa) continue;
        dfsu(nxt, now);
        up[now] += up[nxt]; 
    }
}
void dfsd(int now, int pa, int ppa){
    down[now] = g[pa].size() + down[pa];
    LL sum = 0;
    if(now != 1) down[now] += up[pa] - up[now] - g[pa].size();
    for (int i = g[now].size() - 1; i >= 0; --i){
        int nxt = g[now][i];
        if(nxt == pa) continue;
        dfsd(nxt, now, pa);
    }
}
void dfs(int now,int pa){
    up[now] += up[pa];
    down[now] += down[pa];
    fa[now][0] = pa, dep[now] = dep[pa] + 1;
    for (int i = 1; i <= 16; ++i) fa[now][i] = fa[fa[now][i - 1]][i - 1];
    for (int i = g[now].size() - 1; i >= 0; --i){
        int nxt = g[now][i];
        if(nxt == pa) continue;
        dfs(nxt, now);
    }
}
int LCA(int u,int v){
    if(dep[u] < dep[v]) swap(u, v);
    for (int i = 16; i >= 0; --i) if(dep[fa[u][i]] >= dep[v]) u = fa[u][i];
    if(u == v) return u;
    for (int i = 16; i >= 0; --i) if(fa[u][i] != fa[v][i]) u = fa[u][i],v = fa[v][i];
    return fa[u][0];
}
void solve(){
    int n = read();
    for (int i = 1; i < n; ++i){
        int x= read() + 1, y = read() + 1;
        g[x].push_back(y);
        g[y].push_back(x);
    }
    dfsu(1, 0);
    dfsd(1, 0, 0);
    dfs(1, 0);
    int Q = read();
    for (int i = 1; i <= Q; ++i){
        int p = read(), now = read() + 1;
        LL ans = 0;
        for (int j = 1; j <= p; ++j){
            int lst = now;
            now = read() + 1;
            int Lca = LCA(now, lst);
            ans += up[lst] - up[Lca] + down[now] - down[Lca];
        }
        printf("%lld.0000\n",ans);
    }
    clean(n);
}
int main()
{
    freopen("C.in", "r", stdin);
    freopen("C.out", "w", stdout);
    int t = read();
    while(t--) {
        solve();
        printf("\n");
    }
    return 0;
}

转载于:https://www.cnblogs.com/LZYcaiji/p/10397875.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值