UTF8gbsn
Q:
趣味问题, 假如我有一个边长为1的正方形.
随机的从正方形里面取得两个点
p
1
,
p
2
p_1, p_2
p1,p2.
计算
d
p
1
,
p
2
=
∥
p
1
−
p
2
∥
2
2
d_{p_1,p_2}=\|p_1-p_2\|^2_2
dp1,p2=∥p1−p2∥22. 如果重复这个操作
N
N
N次,
我们就会得到一个距离的集合
D
=
{
d
1
,
d
2
,
⋯
,
d
N
}
D=\{d_1,d_2,\cdots, d_N\}
D={d1,d2,⋯,dN}. 请问
E
(
D
)
=
?
E(D)=?
E(D)=?.
就是两两随机点之间的距离均值是多少?
A1:
这道题看起来很简单, 实际上呢也不难.
我们先写一段python代码来模拟这个过程.
import numpy as np
N = 500000
S = 0
for k in range(N):
x1 = np.random.rand()
x2 = np.random.rand()
y1 = np.random.rand()
y2 = np.random.rand()
d = np.sqrt((x1-x2)**2+ (y1-y2)**2)
S += d
print(S/N)
# 0.5215937080983077
由此可见这个答案是接近0.52的.
A2:
那么我们用模拟的方法给出了近似解, 有没有解析解呢? 答案是当然有.
解析解的精髓就是穷举所有可能性. 而穷举所有可能性的计算形式是什么呢?
答案是积分.
E ( D ) = ∫ 0 1 ∫ 0 1 ∫ 0 1 ∫ 0 1 ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 d x 1 d x 2 d y 1 d y 2 ∫ 0 1 ∫ 0 1 ∫ 0 1 ∫ 0 1 1 d x 1 d x 2 d y 1 d y 2 = ∫ 0 1 ∫ 0 1 ∫ 0 1 ∫ 0 1 ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 d x 1 d x 2 d y 1 d y 2 E(D)=\frac{\int_0^1\int_0^1\int_0^1\int_0^1 \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}dx_1dx_2dy_1dy_2}{\int_0^1\int_0^1\int_0^1\int_0^1 1dx_1dx_2dy_1dy_2}=\int_0^1\int_0^1\int_0^1\int_0^1 \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}dx_1dx_2dy_1dy_2 E(D)=∫01∫01∫01∫011dx1dx2dy1dy2∫01∫01∫01∫01(x1−x2)2+(y1−y2)2dx1dx2dy1dy2=∫01∫01∫01∫01(x1−x2)2+(y1−y2)2dx1dx2dy1dy2
那么接下来就是如何求这个积分了. 只里面要用到一点概率学的只是.
如果
x
,
y
∼
U
(
0
,
1
)
x,y\sim U(0,1)
x,y∼U(0,1), 也就是
x
,
y
x,y
x,y是均匀分布.
那么我们可以得
z
=
∣
x
−
y
∣
z=|x-y|
z=∣x−y∣是一个三角分布, 它的密度函数位
p
(
z
)
=
{
2
(
1
−
z
)
,
z
∈
(
0
,
1
)
0
,
z
∉
(
0
,
1
)
p(z)=\left\{ \begin{aligned} 2(1-z), \quad z\in(0,1)\\ 0, \quad z\notin(0,1) \end{aligned} \right.
p(z)={2(1−z),z∈(0,1)0,z∈/(0,1)
那么可以把原来的积分化为
4
∫
0
1
∫
0
1
x
2
+
y
2
(
1
−
x
)
(
1
−
y
)
d
x
d
y
4 \int_{0}^{1}\int_{0}^{1}{\sqrt{x^2+y^2}(1-x)(1-y)dxdy}
4∫01∫01x2+y2(1−x)(1−y)dxdy
这个等式的由来, 实际上是根据期望的计算方式来的. 因为
x
,
y
x,y
x,y是独立同分布的,
所以求联合分布的期望时可以直接相乘. 接下来我们进行极坐标变换
4 ∫ 0 π 4 2 ∫ 0 1 c o s θ r 2 c o s 2 θ + r 2 s i n 2 θ ⋅ ( 1 − r c o s θ ) ( 1 − r s i n θ ) r d r d θ 4 \int_{0}^{\frac{\pi}{4}}2\int_{0}^{\frac{1}{cos\theta}}{\sqrt{r^2cos^2\theta+r^2sin^2\theta}}\cdot(1-rcos\theta)(1-rsin\theta) rdrd\theta 4∫04π2∫0cosθ1r2cos2θ+r2sin2θ⋅(1−rcosθ)(1−rsinθ)rdrdθ
做个化简可得
8
∫
0
π
/
4
sec
3
θ
12
−
sec
3
θ
tan
θ
20
d
θ
8 \int_{0}^{\pi / 4} \frac{\sec ^{3} \theta}{12}-\frac{\sec ^{3} \theta \tan \theta}{20} d \theta
8∫0π/412sec3θ−20sec3θtanθdθ
8 ⋅ ( sec θ tan θ + ln ∣ sec θ + tan θ ∣ 24 − sec 3 θ 60 ) 0 π / 4 8 \cdot\left(\frac{\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|}{24}-\frac{\sec ^{3} \theta}{60}\right)_{0}^{\pi / 4} 8⋅(24secθtanθ+ln∣secθ+tanθ∣−60sec3θ)0π/4
最后可得解析解为
2
+
2
+
5
ln
(
2
+
1
)
15
≈
0.521
\frac{2+\sqrt{2}+5 \ln (\sqrt{2}+1)}{15} \approx 0.521
152+2+5ln(2+1)≈0.521