单位正方形上两个随机点之间距离的期望(均值)

UTF8gbsn

Q:

趣味问题, 假如我有一个边长为1的正方形.
随机的从正方形里面取得两个点 p 1 , p 2 p_1, p_2 p1,p2.
计算 d p 1 , p 2 = ∥ p 1 − p 2 ∥ 2 2 d_{p_1,p_2}=\|p_1-p_2\|^2_2 dp1,p2=p1p222. 如果重复这个操作 N N N次,
我们就会得到一个距离的集合 D = { d 1 , d 2 , ⋯   , d N } D=\{d_1,d_2,\cdots, d_N\} D={d1,d2,,dN}. 请问 E ( D ) = ? E(D)=? E(D)=?.
就是两两随机点之间的距离均值是多少?

A1:

这道题看起来很简单, 实际上呢也不难.
我们先写一段python代码来模拟这个过程.

import numpy as np

N = 500000
S = 0

for k in range(N):
    x1 = np.random.rand()
    x2 = np.random.rand()
    y1 = np.random.rand()
    y2 = np.random.rand()
    d = np.sqrt((x1-x2)**2+ (y1-y2)**2)
    S += d

print(S/N)
# 0.5215937080983077

由此可见这个答案是接近0.52的.

A2:

那么我们用模拟的方法给出了近似解, 有没有解析解呢? 答案是当然有.
解析解的精髓就是穷举所有可能性. 而穷举所有可能性的计算形式是什么呢?
答案是积分.

E ( D ) = ∫ 0 1 ∫ 0 1 ∫ 0 1 ∫ 0 1 ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 d x 1 d x 2 d y 1 d y 2 ∫ 0 1 ∫ 0 1 ∫ 0 1 ∫ 0 1 1 d x 1 d x 2 d y 1 d y 2 = ∫ 0 1 ∫ 0 1 ∫ 0 1 ∫ 0 1 ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 d x 1 d x 2 d y 1 d y 2 E(D)=\frac{\int_0^1\int_0^1\int_0^1\int_0^1 \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}dx_1dx_2dy_1dy_2}{\int_0^1\int_0^1\int_0^1\int_0^1 1dx_1dx_2dy_1dy_2}=\int_0^1\int_0^1\int_0^1\int_0^1 \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}dx_1dx_2dy_1dy_2 E(D)=010101011dx1dx2dy1dy201010101(x1x2)2+(y1y2)2 dx1dx2dy1dy2=01010101(x1x2)2+(y1y2)2 dx1dx2dy1dy2

那么接下来就是如何求这个积分了. 只里面要用到一点概率学的只是.
如果 x , y ∼ U ( 0 , 1 ) x,y\sim U(0,1) x,yU(0,1), 也就是 x , y x,y x,y是均匀分布.
那么我们可以得 z = ∣ x − y ∣ z=|x-y| z=xy是一个三角分布, 它的密度函数位 p ( z ) = { 2 ( 1 − z ) , z ∈ ( 0 , 1 ) 0 , z ∉ ( 0 , 1 ) p(z)=\left\{ \begin{aligned} 2(1-z), \quad z\in(0,1)\\ 0, \quad z\notin(0,1) \end{aligned} \right. p(z)={2(1z),z(0,1)0,z/(0,1)

那么可以把原来的积分化为
4 ∫ 0 1 ∫ 0 1 x 2 + y 2 ( 1 − x ) ( 1 − y ) d x d y 4 \int_{0}^{1}\int_{0}^{1}{\sqrt{x^2+y^2}(1-x)(1-y)dxdy} 40101x2+y2 (1x)(1y)dxdy

这个等式的由来, 实际上是根据期望的计算方式来的. 因为 x , y x,y x,y是独立同分布的,
所以求联合分布的期望时可以直接相乘. 接下来我们进行极坐标变换

4 ∫ 0 π 4 2 ∫ 0 1 c o s θ r 2 c o s 2 θ + r 2 s i n 2 θ ⋅ ( 1 − r c o s θ ) ( 1 − r s i n θ ) r d r d θ 4 \int_{0}^{\frac{\pi}{4}}2\int_{0}^{\frac{1}{cos\theta}}{\sqrt{r^2cos^2\theta+r^2sin^2\theta}}\cdot(1-rcos\theta)(1-rsin\theta) rdrd\theta 404π20cosθ1r2cos2θ+r2sin2θ (1rcosθ)(1rsinθ)rdrdθ

做个化简可得
8 ∫ 0 π / 4 sec ⁡ 3 θ 12 − sec ⁡ 3 θ tan ⁡ θ 20 d θ 8 \int_{0}^{\pi / 4} \frac{\sec ^{3} \theta}{12}-\frac{\sec ^{3} \theta \tan \theta}{20} d \theta 80π/412sec3θ20sec3θtanθdθ

8 ⋅ ( sec ⁡ θ tan ⁡ θ + ln ⁡ ∣ sec ⁡ θ + tan ⁡ θ ∣ 24 − sec ⁡ 3 θ 60 ) 0 π / 4 8 \cdot\left(\frac{\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|}{24}-\frac{\sec ^{3} \theta}{60}\right)_{0}^{\pi / 4} 8(24secθtanθ+lnsecθ+tanθ60sec3θ)0π/4

最后可得解析解为
2 + 2 + 5 ln ⁡ ( 2 + 1 ) 15 ≈ 0.521 \frac{2+\sqrt{2}+5 \ln (\sqrt{2}+1)}{15} \approx 0.521 152+2 +5ln(2 +1)0.521

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值