[学习记录]tensorflow超简单步骤使用

本文介绍了Colin老师的机器学习课程中关于神经网络的基础概念及TensorFlow的简单应用。讲解了神经网络的工作原理,类比于人类大脑的学习过程,以及如何通过TensorFlow创建和初始化神经网络。同时,提到了使用tf.constant、tf.placeholder和tf.Session等基本操作。
摘要由CSDN通过智能技术生成

colin老师的机器学习第二堂课。主要讲了一些tensorflow和神经网络的东西。

1.神经网络概述

  这里不讲太多专业的,数学的内容,只为和我一样的萌新讲一些形象的,落到代码上的东西

  神经网络就像人的大脑一样,你只需要设计好结构,初始值都是随机的,我们只需要告诉它输入以及所对应的输出,以及告诉它如何修正错误,它就能慢慢学会找到之中的规律,并且用于解决问题。就像真正的大脑一样。

  这当然不准确,但是对于完全的小白来说可供参考。

 

2.tensorflow超简单介绍

  

  tf.constant,可以理解为常量类,直接输出没有办法得到结果

  tf.Session,一个会话,tf中的图必须通过session来运行。

tf.placeholder,类似于某种占位变量,可以使用feed_dict来赋值


 

接下来创建一个简单的网络

创建网络后很重要的一点就是通过init来初始化所有变量。不同初始化后得到的结果不同。

由于没有给出错误函数帮助网络矫正自身错误,所以完全不知道输出是什么。

接下来进行简单的预测

但是仅仅给定标准输出,仍然不能进行训练,还需要告知它如何判断错误

 

转载于:https://www.cnblogs.com/trickofjoker/p/9315737.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值