关于使用ImageMagick和Tesseract进行简单数字图像识别

本文介绍了如何结合ImageMagick和Tesseract进行数字图像识别。首先通过ImageMagick转换图像格式并进行灰度化或二值化处理,然后使用Tesseract进行识别,通过调整参数提高识别率。在实践中,经过适当预处理和放大图像,识别率可达90%左右。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

据说Tesseract可是世界排名第三的OCR神器,2010年又更新了3.0版本。Tesseract原先是HP写的,现在Open Source了。

 

下面介绍怎么用Tesseract配合ImageMagick进行简单的数字图像识别。

 

首先Tesseract只能识别bmp,tif,所以先拿ImageMagick转换一下图像。注意得无压缩转换,否则Tesseract报错。

convert -compress none ./pict.gif./in1.tif

然后将图片灰度化-colorspace Gray,或者直接二值化-monochrome成黑白,这样识别率会高一点。

接下来裁剪出想要进行精确识别的部分:-crop widthxheight+x+y

比如-crop 320x40+0+1,从左上角开始坐标为(0,1)处,裁剪出320*40大小的图像。注意参数里是英文字母x,不是乘号*。

 

还有就是网上搜到的-depth 8和-alpha off参数,实践表明加不加效果不大。

一步完成就像这样:

convert -compress none-depth 8 -alpha off -crop 535x24+2+2 -monochrome ./pict.gif ./in1.tif

 

预处理完之后最好再放大一下,这次的样例放大到500%~600%的识别效率就能令人满意。

convert ./in1.tif -scale600% ./in2.tif

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值