前言
先观察以下等式:
3
3
+
4
3
+
5
3
=
6
3
3^3+4^3+5^3=6^3
33+43+53=63你会发现,三个整数的立方和居然等于另一个立方数,用代数表示为:
x
3
+
y
3
+
z
3
=
w
3
x^3+y^3+z^3=w^3
x3+y3+z3=w3然后,满足这方程的还有其他解吗?
在解答之前,先说一下,这类方程叫 不定方程,也称为丢番图方程(Diophantine Equation)。这是一个有多个未知数、且系数都是整数的方程。因为未知数过多,在实数范围内会存在无穷组解,所以解通常都会限制为整数或有理数。例如:
- x 3 + y 3 = z 3 x^3+y^3=z^3 x3+y3=z3,不存在正整数解。
- x 3 + y 3 + z 3 = 1 x^3+y^3+z^3=1 x3+y3+z3=1, 具有无穷多解 ( x , y , z ) = ( 9 n 4 , 3 n − 9 n 4 , 1 − 9 n 3 ) (x,y,z)=(9n^{4},3n-9n^{4},1-9n^{3}) (x,y,z)=(9n4,3n−9n4,1−9n3)
当不定方程的次数来到3时,求解已经变得极其困难,也使得很多问题至今都未曾解决,例如:
- 是否所有的整数都可以表示成四个立方数的和?
- 哪些整数可以表示成两个有理数的立方和?
三次不定方程多数都涉及到椭圆方程
y
2
=
x
3
+
a
x
+
b
y^2=x^3+ax+b
y2=x3+ax+b,因笔者水平有限,本篇暂不讨论这类问题。
本篇主要介绍三次不定方程的一些结论,让读者对此类问题有些了解。
任何一个立方数都可以表示成三个立方数的和
费马大定理: 当
n
>
2
n>2
n>2时,方程
x
n
+
y
n
=
z
n
x^n+y^n=z^n
xn+yn=zn 没有正整数解。
而不定方程
x
3
+
y
3
+
z
3
=
w
3
x^3+y^3+z^3=w^3
x3+y3+z3=w3 有以下整数解
{
λ
x
=
c
(
−
a
3
−
b
3
+
c
3
)
λ
y
=
−
(
a
2
−
a
b
+
b
2
)
2
+
(
a
+
b
)
c
3
λ
z
=
(
a
2
−
a
b
+
b
2
)
2
+
(
2
a
−
b
)
c
3
λ
w
=
c
(
a
3
+
(
a
−
b
)
3
+
c
3
)
\begin{cases} \lambda x=c(-a^3-b^3+c^3) \\ \lambda y=-(a^2-ab+b^2)^2+(a+b)c^3 \\ \lambda z=(a^2-ab+b^2)^2+(2a-b)c^3 \\ \lambda w=c(a^3+(a-b)^3+c^3) \end{cases}
⎩
⎨
⎧λx=c(−a3−b3+c3)λy=−(a2−ab+b2)2+(a+b)c3λz=(a2−ab+b2)2+(2a−b)c3λw=c(a3+(a−b)3+c3)其中要求
{
a
,
b
,
c
,
λ
∈
N
a
>
b
c
3
>
a
3
+
b
3
(
x
,
y
,
z
,
w
)
=
1
\begin{cases} a,b,c,\lambda \in N \\ a > b \\ c^3 > a^3+b^3 \\ (x,y,z,w)=1 \end{cases}
⎩
⎨
⎧a,b,c,λ∈Na>bc3>a3+b3(x,y,z,w)=1
Ramanujan给过以下恒等式(但不完全是通解):
(
3
a
2
+
5
a
b
−
b
2
)
3
+
(
4
a
2
−
4
a
b
+
6
b
2
)
3
+
(
5
a
2
−
5
a
b
−
3
b
2
)
3
=
(
6
a
2
−
4
a
b
+
4
b
2
)
3
(3a^2+5ab-b^2)^3+(4a^2-4ab+6b^2)^3+(5a^2-5ab-3b^2)^3=(6a^2-4ab+4b^2)^3
(3a2+5ab−b2)3+(4a2−4ab+6b2)3+(5a2−5ab−3b2)3=(6a2−4ab+4b2)3
参考资料:
知乎
从费马大定理谈起(十)
笔者得到过以下式子,作为纪念写在这里:
(
28
a
2
+
12
b
2
+
10
c
2
−
32
a
b
−
20
a
c
+
20
b
c
)
3
+
(
−
21
a
2
+
1
b
2
+
9
c
2
+
16
a
b
+
3
a
c
+
11
b
c
)
3
+
(
−
19
a
2
−
9
b
2
−
1
c
2
+
32
a
b
+
29
a
c
−
11
b
c
)
3
+
(
−
18
a
2
−
10
b
2
−
12
c
2
+
20
a
b
+
12
a
c
−
20
b
c
)
3
=
0
(28 a^2+12 b^2+10 c^2-32 a b-20 a c+20 b c)^3+\\(-21 a^2+1 b^2+9 c^2+16 a b+3 a c+11 b c)^3+\\(-19 a^2-9 b^2-1 c^2+32 a b+29 a c-11 b c)^3+\\(-18 a^2-10 b^2-12 c^2+20 a b+12 a c-20 b c)^3=0
(28a2+12b2+10c2−32ab−20ac+20bc)3+(−21a2+1b2+9c2+16ab+3ac+11bc)3+(−19a2−9b2−1c2+32ab+29ac−11bc)3+(−18a2−10b2−12c2+20ab+12ac−20bc)3=0
任何一个整数都可以表示为5个立方数之和
华林于1770年提出华林问题:
对任意一个正整数
- 可以写成4个自然数的平方和,记为 g ( 2 ) = 4 g(2)=4 g(2)=4,由1770年拉格朗日证明
- 可以写成9个自然数的立方和,记为 g ( 3 ) = 9 g(3)=9 g(3)=9,由1909年亚瑟·韦伊费列治证明。
- 可以写成19个自然数的四次方和,记为 g ( 4 ) = 19 g(4)=19 g(4)=19,由1986年巴拉苏布拉玛尼安证明。
1964年,陈景润证明了
g
(
5
)
=
37
g(5)=37
g(5)=37
1940年,皮莱证明了
g
(
6
)
=
73
g(6)=73
g(6)=73
如果将自然数改为整数,那对应的数量记为
v
(
n
)
v(n)
v(n)。
现在已知
v
(
2
)
=
g
(
2
)
=
4
,
v
(
4
)
=
g
(
4
)
,
v
(
3
)
∈
[
4
,
5
]
v(2)=g(2)=4, v(4)=g(4), v(3) \in [4,5]
v(2)=g(2)=4,v(4)=g(4),v(3)∈[4,5]
这里任意一个整数n,都有以下恒等式,可以表示为5个立方数之和:
n
=
n
3
+
(
−
n
3
−
n
−
6
6
)
3
+
(
n
3
−
n
−
6
6
)
3
+
(
n
3
−
n
6
)
3
+
(
n
3
−
n
6
)
3
n=n^3+(\frac{-n^3-n-6}{6})^3+(\frac{n^3-n-6}{6})^3+(\frac{n^3-n}{6})^3+(\frac{n^3-n}{6})^3
n=n3+(6−n3−n−6)3+(6n3−n−6)3+(6n3−n)3+(6n3−n)3
下面的数字可以表示为4个整数的立方和
6
n
=
(
n
+
1
)
3
+
(
n
−
1
)
3
+
(
−
n
)
3
+
(
−
n
)
3
6n=(n+1)^3+(n-1)^3+(-n)^3+(-n)^3
6n=(n+1)3+(n−1)3+(−n)3+(−n)3
6
n
+
3
=
n
3
+
(
−
n
+
4
)
3
+
(
2
n
−
5
)
3
+
(
−
2
n
+
4
)
3
6n+3=n^3+(-n+4)^3+(2n-5)^3+(-2n+4)^3
6n+3=n3+(−n+4)3+(2n−5)3+(−2n+4)3
18
n
+
1
=
(
2
n
+
14
)
3
+
(
−
2
n
−
23
)
3
+
(
−
3
n
−
26
)
3
+
(
3
n
+
30
)
3
18n+1=(2n+14)^3+(-2n-23)^3+(-3n-26)^3+(3n+30)^3
18n+1=(2n+14)3+(−2n−23)3+(−3n−26)3+(3n+30)3
18
n
+
7
=
(
n
+
2
)
3
+
(
6
n
−
1
)
3
+
(
8
n
−
2
)
3
+
(
−
9
n
+
2
)
3
18n+7=(n+2)^3+(6n-1)^3+(8n-2)^3+(-9n+2)^3
18n+7=(n+2)3+(6n−1)3+(8n−2)3+(−9n+2)3
18
n
+
8
=
(
n
−
5
)
3
+
(
−
n
+
14
)
3
+
(
−
3
n
+
29
)
3
+
(
3
n
−
30
)
3
18n+8=(n-5)^3+(-n+14)^3+(-3n+29)^3+(3n-30)^3
18n+8=(n−5)3+(−n+14)3+(−3n+29)3+(3n−30)3
54
n
+
2
=
(
29484
n
2
+
2211
n
+
43
)
3
+
(
−
29484
n
2
−
2157
n
−
41
)
3
+
(
9828
n
2
+
485
n
+
4
)
3
+
(
−
9828
n
2
−
971
n
−
22
)
3
54n+2=(29484n^2+2211n+43)^3+(-29484n^2-2157n-41)^3+(9828n^2+485n+4)^3+(-9828n^2-971n-22)^3
54n+2=(29484n2+2211n+43)3+(−29484n2−2157n−41)3+(9828n2+485n+4)3+(−9828n2−971n−22)3
54
n
+
20
=
(
3
n
−
11
)
3
+
(
−
3
n
+
10
)
3
+
(
n
+
2
)
3
+
(
−
n
+
7
)
3
54n+20=(3n-11)^3+(-3n+10)^3+(n+2)^3+(-n+7)^3
54n+20=(3n−11)3+(−3n+10)3+(n+2)3+(−n+7)3
216
n
−
16
=
(
14742
n
2
−
2157
n
+
82
)
3
+
(
−
14742
n
2
+
2211
n
−
86
)
3
+
(
4914
n
2
−
971
n
+
44
)
3
+
(
−
4914
n
2
+
485
n
−
8
)
3
216n-16=(14742n^2-2157n+82)^3+(-14742n^2+2211n-86)^3+(4914n^2-971n+44)^3+(-4914n^2+485n-8)^3
216n−16=(14742n2−2157n+82)3+(−14742n2+2211n−86)3+(4914n2−971n+44)3+(−4914n2+485n−8)3
216
n
+
92
=
(
3
n
−
164
)
3
+
(
−
3
n
+
160
)
3
+
(
n
−
35
)
3
+
(
−
n
+
71
)
3
216n+92=(3n-164)^3+(-3n+160)^3+(n-35)^3+(-n+71)^3
216n+92=(3n−164)3+(−3n+160)3+(n−35)3+(−n+71)3
Sum_of_four_cubes_problem
部分整数可以拆分成三个整数的立方和
N
=
x
3
+
y
3
+
z
3
N=x^3+y^3+z^3
N=x3+y3+z3,
N
≠
4
,
5
m
o
d
9
N\ne4,5\mod 9
N=4,5mod9
Heath-Brown 猜想:任何一个除以9不余4或5的整数都可以表示为3个立方数之和,并且有无穷多组。
如果这个猜想成立,那上面的任何一个整数都可以表示为4个立方数之和。
目前只有0,1,2这三个自然数可以表示为三个不高于四次的多项式的立方和。
a
3
+
(
−
a
)
3
+
0
3
=
0
(
9
b
4
)
3
+
(
3
b
−
9
b
4
)
3
+
(
1
−
9
b
3
)
3
=
1
(
1
+
6
c
3
)
3
+
(
1
−
6
c
3
)
3
+
(
−
6
c
2
)
3
=
2
a^{3}+(-a)^{3}+0^{3}=0 \\ (9b^{4})^{3}+(3b-9b^{4})^{3}+(1-9b^{3})^{3}=1 \\ (1+6c^{3})^{3}+(1-6c^{3})^{3}+(-6c^{2})^{3}=2
a3+(−a)3+03=0(9b4)3+(3b−9b4)3+(1−9b3)3=1(1+6c3)3+(1−6c3)3+(−6c2)3=2除了上述表示,1还有其他的恒等式:
(
1
−
9
t
3
+
648
t
6
+
3888
t
9
)
3
+
(
−
135
t
4
+
3888
t
10
)
3
+
(
3
t
−
81
t
4
−
1296
t
7
−
3888
t
10
)
3
=
1
(1-9 t^3+648 t^6+3888 t^9)^3+(-135 t^4+3888 t^{10})^3+(3 t-81 t^4-1296 t^7-3888 t^{10})^3=1
(1−9t3+648t6+3888t9)3+(−135t4+3888t10)3+(3t−81t4−1296t7−3888t10)3=1
1和2的恒等式可以合并成以下恒等式:
(
9
a
x
4
−
6
b
x
3
+
b
)
3
+
(
−
9
a
x
4
+
6
b
x
3
−
3
a
x
+
b
)
3
+
(
9
a
x
3
−
6
b
x
2
+
a
)
3
=
9
a
b
x
(
a
x
−
b
)
+
a
3
+
2
b
3
(9 a x^4-6 b x^3+b)^3+(-9 a x^4+6 b x^3-3 a x+b)^3+(9 a x^3-6 b x^2+a)^3 = 9 a b x(ax-b)+a^3+2 b^3
(9ax4−6bx3+b)3+(−9ax4+6bx3−3ax+b)3+(9ax3−6bx2+a)3=9abx(ax−b)+a3+2b3
另外,3目前有3种立方和表示法
3
=
1
3
+
1
3
+
1
3
=
4
3
+
4
3
+
(
−
5
)
3
=
56993682122196238072
0
3
+
(
−
569936821113563493509
)
3
+
(
−
472715493453327032
)
3
3 = 1^3+1^3+1^3\\ =4^3+4^3+(-5)^3\\ =569936821221962380720³ + (-569936821113563493509)³ + (-472715493453327032)³
3=13+13+13=43+43+(−5)3=5699368212219623807203+(−569936821113563493509)3+(−472715493453327032)3
下面是 N = x 3 + y 3 + z 3 N=x^3+y^3+z^3 N=x3+y3+z3 的最小解,其中 N ≠ 4 , 5 m o d 9 , N ≤ 100 N\ne 4,5 \mod 9, N \le 100 N=4,5mod9,N≤100
N x y z
1: 0 0 1
2: 0 1 1
3: 1 1 1
6: -1 -1 2
7: 0 -1 2
8: 0 0 2
9: 0 1 2
10: 1 1 2
11: -2 -2 3
12: 7 10 -11
15: -1 2 2
16: -511 -1609 1626
17: 1 2 2
18: -1 -2 3
19: 0 -2 3
20: 1 -2 3
21: -11 -14 16
24: -2901096694 -15550555555 15584139827
25: -1 -1 3
26: 0 -1 3
27: 0 0 3
28: 0 1 3
29: 1 1 3
30: -283059965 -2218888517 2220422932
33: 8866128975287528 -8778405442862239 -2736111468807040
34: -1 2 3
35: 0 2 3
36: 1 2 3
37: 0 -3 4
38: 1 -3 4
39: 117367 134476 -159380
42: -80538738812075974 80435758145817515 12602123297335631
43: 2 2 3
44: -5 -7 8
45: 2 -3 4
46: -2 3 3
47: 6 7 -8
48: -23 -26 31
51: 602 659 -796
52: 23961292454 60702901317 -61922712865
53: -1 3 3
54: -7 -11 12
55: 1 3 3
56: -11 -21 22
57: 1 -2 4
60: -1 -4 5
61: 0 -4 5
62: 2 3 3
63: 0 -1 4
64: 0 0 4
65: 0 1 4
66: 1 1 4
69: 2 -4 5
70: 11 20 -21
71: -1 2 4
72: 7 9 -10
73: 1 2 4
74: -284650292555885 66229832190556 283450105697727
75: 4381159 435203083 -435203231
78: 26 53 -55
79: -19 -33 35
80: 69241 103532 -112969
81: 10 17 -18
82: -11 -11 14
83: -2 3 4
84: -8241191 -41531726 41639611
87: -1972 -4126 4271
88: 3 -4 5
89: 6 6 -7
90: -1 3 4
91: 0 3 4
92: 1 3 4
93: -5 -5 7
96: 10853 13139 -15250
97: -1 -3 5
98: 0 -3 5
99: 2 3 4
100: -3 -6 7
参考资料:
人类第一次将33写成了3个整数的立方和
How to search the solutions of n=x3+y3+z3
Sums of Three Cubes
任何一个有理数都可以表示成三个有理数的立方和
a = ( a 3 − 3 6 3 2 a 2 + 3 4 a + 3 6 ) 3 + ( − a 3 + 3 5 a + 3 6 3 2 a 2 + 3 4 a + 3 6 ) 3 + ( a 3 a 2 + 3 5 a 3 2 a 2 + 3 4 a + 3 6 ) 3 a=(\frac{a^3-3^6}{3^2a^2+3^4a+3^6})^3+(\frac{-a^3+3^5a+3^6}{3^2a^2+3^4a+3^6})^3+(\frac{a^3a^2+3^5a}{3^2a^2+3^4a+3^6})^3 a=(32a2+34a+36a3−36)3+(32a2+34a+36−a3+35a+36)3+(32a2+34a+36a3a2+35a)3
部分整数可拆分成两个有理数的立方和
N
=
(
x
/
z
)
3
+
(
y
/
z
)
3
N=(x/z)^3+(y/z)^3
N=(x/z)3+(y/z)3 即
x
3
+
y
3
=
N
z
3
x^3+y^3=Nz^3
x3+y3=Nz3
有多少个整数可以写成两个有理数(分数)的三次方之和? 链接
利用以下恒等式
a
3
−
b
3
=
(
a
4
−
2
a
b
3
a
3
+
b
3
)
3
−
(
b
4
−
2
a
3
b
a
3
+
b
3
)
3
a
3
+
b
3
=
(
a
4
+
2
a
b
3
a
3
−
b
3
)
3
−
(
b
4
+
2
a
3
b
a
3
−
b
3
)
3
a^3-b^3=(\frac{a^4-2a b^3}{a^3+b^3})^3-(\frac{b^4-2a^3b}{a^3+b^3})^3\\ a^3+b^3=(\frac{a^4+2a b^3}{a^3-b^3})^3-(\frac{b^4+2a^3b}{a^3-b^3})^3
a3−b3=(a3+b3a4−2ab3)3−(a3+b3b4−2a3b)3a3+b3=(a3−b3a4+2ab3)3−(a3−b3b4+2a3b)3 可以得到:如果一个有理数可以写成一对不同相等的有理数的立方和,那么这个有理数可以写成无数对不同相等的有理数的立方和。
另外,如果
a
x
3
+
b
y
3
=
c
z
3
ax^3+by^3=cz^3
ax3+by3=cz3,那么通过以下恒等式可以得到无穷的解:
a
(
−
b
x
y
3
−
c
x
z
3
)
3
+
b
(
a
x
3
y
+
c
y
z
3
)
3
=
c
(
−
a
x
3
z
+
b
y
3
z
)
3
a(-bxy^3-cxz^3)^3+b(ax^3y+cyz^3)^3=c(-ax^3z+by^3z)^3
a(−bxy3−cxz3)3+b(ax3y+cyz3)3=c(−ax3z+by3z)3
最后, N = ( x / z ) 3 + ( y / z ) 3 N=(x/z)^3+(y/z)^3 N=(x/z)3+(y/z)3 的最小解如下:
N x y z
1 0 1 1
2 1 1 1
6 17 37 21
7 -1 2 1
8 0 2 1
9 1 2 1
12 19 89 39
13 2 7 3
15 397 683 294
16 2 2 1
17 -1 18 7
19 -2 3 1
20 1 19 7
22 17299 25469 9954
26 -1 3 1
27 0 3 1
28 1 3 1
30 107 163 57
31 -65 137 42
33 523 1853 582
34 -359 631 182
35 2 3 1
37 -3 4 1
42 -71 449 129
43 1 7 2
48 34 74 21
49 -2 11 3
50 -11267 23417 6111
51 62641 730511 197028
53 -1819 1872 217
54 3 3 1
56 -2 4 1
58 -14653 28747 7083
61 -4 5 1
62 7 11 3
63 -1 4 1
64 0 4 1
65 1 4 1
67 1208 5353 1323
68 -472663 2538163 620505
69 -10441 15409 3318
70 17 53 13
71 -126 197 43
72 2 4 1
75 -11951 17351 3606
78 53 5563 1302
79 -4 13 3
84 323 433 111
85 -2404889 2570129 330498
86 5 13 3
87 -907929611 1176498611 216266610
89 36 53 13
90 -431 1241 273
91 3 4 1
92 -3547 25903 5733
94 -15616184186396177 15642626656646177 590736058375050
96 38 178 39
97 -5 14 3
98 -3 5 1
参考资料:
oeis.org x y z
Hisanori Mishima, Solutions of Diophantine equation x3+y3=A z3 $
更多的资料可以查看
mathworld wolfram
Mathematician’s Secret Room
mathpages
oeis