数学笔记-三次不定方程

前言

先观察以下等式: 3 3 + 4 3 + 5 3 = 6 3 3^3+4^3+5^3=6^3 33+43+53=63你会发现,三个整数的立方和居然等于另一个立方数,用代数表示为:
x 3 + y 3 + z 3 = w 3 x^3+y^3+z^3=w^3 x3+y3+z3=w3然后,满足这方程的还有其他解吗?

在解答之前,先说一下,这类方程叫 不定方程,也称为丢番图方程(Diophantine Equation)。这是一个有多个未知数、且系数都是整数的方程。因为未知数过多,在实数范围内会存在无穷组解,所以解通常都会限制为整数或有理数。例如:

  • x 3 + y 3 = z 3 x^3+y^3=z^3 x3+y3=z3,不存在正整数解。
  • x 3 + y 3 + z 3 = 1 x^3+y^3+z^3=1 x3+y3+z3=1, 具有无穷多解 ( x , y , z ) = ( 9 n 4 , 3 n − 9 n 4 , 1 − 9 n 3 ) (x,y,z)=(9n^{4},3n-9n^{4},1-9n^{3}) (x,y,z)=(9n4,3n9n4,19n3)

当不定方程的次数来到3时,求解已经变得极其困难,也使得很多问题至今都未曾解决,例如:

  • 是否所有的整数都可以表示成四个立方数的和?
  • 哪些整数可以表示成两个有理数的立方和?

三次不定方程多数都涉及到椭圆方程 y 2 = x 3 + a x + b y^2=x^3+ax+b y2=x3+ax+b,因笔者水平有限,本篇暂不讨论这类问题。
本篇主要介绍三次不定方程的一些结论,让读者对此类问题有些了解。

任何一个立方数都可以表示成三个立方数的和

费马大定理: 当 n > 2 n>2 n>2时,方程 x n + y n = z n x^n+y^n=z^n xn+yn=zn 没有正整数解。
而不定方程 x 3 + y 3 + z 3 = w 3 x^3+y^3+z^3=w^3 x3+y3+z3=w3 有以下整数解
{ λ x = c ( − a 3 − b 3 + c 3 ) λ y = − ( a 2 − a b + b 2 ) 2 + ( a + b ) c 3 λ z = ( a 2 − a b + b 2 ) 2 + ( 2 a − b ) c 3 λ w = c ( a 3 + ( a − b ) 3 + c 3 ) \begin{cases} \lambda x=c(-a^3-b^3+c^3) \\ \lambda y=-(a^2-ab+b^2)^2+(a+b)c^3 \\ \lambda z=(a^2-ab+b^2)^2+(2a-b)c^3 \\ \lambda w=c(a^3+(a-b)^3+c^3) \end{cases} λx=c(a3b3+c3)λy=(a2ab+b2)2+(a+b)c3λz=(a2ab+b2)2+(2ab)c3λw=c(a3+(ab)3+c3)其中要求 { a , b , c , λ ∈ N a > b c 3 > a 3 + b 3 ( x , y , z , w ) = 1 \begin{cases} a,b,c,\lambda \in N \\ a > b \\ c^3 > a^3+b^3 \\ (x,y,z,w)=1 \end{cases} a,b,c,λNa>bc3>a3+b3(x,y,z,w)=1

Ramanujan给过以下恒等式(但不完全是通解):
( 3 a 2 + 5 a b − b 2 ) 3 + ( 4 a 2 − 4 a b + 6 b 2 ) 3 + ( 5 a 2 − 5 a b − 3 b 2 ) 3 = ( 6 a 2 − 4 a b + 4 b 2 ) 3 (3a^2+5ab-b^2)^3+(4a^2-4ab+6b^2)^3+(5a^2-5ab-3b^2)^3=(6a^2-4ab+4b^2)^3 (3a2+5abb2)3+(4a24ab+6b2)3+(5a25ab3b2)3=(6a24ab+4b2)3

参考资料:
知乎
从费马大定理谈起(十)

笔者得到过以下式子,作为纪念写在这里:
( 28 a 2 + 12 b 2 + 10 c 2 − 32 a b − 20 a c + 20 b c ) 3 + ( − 21 a 2 + 1 b 2 + 9 c 2 + 16 a b + 3 a c + 11 b c ) 3 + ( − 19 a 2 − 9 b 2 − 1 c 2 + 32 a b + 29 a c − 11 b c ) 3 + ( − 18 a 2 − 10 b 2 − 12 c 2 + 20 a b + 12 a c − 20 b c ) 3 = 0 (28 a^2+12 b^2+10 c^2-32 a b-20 a c+20 b c)^3+\\(-21 a^2+1 b^2+9 c^2+16 a b+3 a c+11 b c)^3+\\(-19 a^2-9 b^2-1 c^2+32 a b+29 a c-11 b c)^3+\\(-18 a^2-10 b^2-12 c^2+20 a b+12 a c-20 b c)^3=0 (28a2+12b2+10c232ab20ac+20bc)3+(21a2+1b2+9c2+16ab+3ac+11bc)3+(19a29b21c2+32ab+29ac11bc)3+(18a210b212c2+20ab+12ac20bc)3=0

任何一个整数都可以表示为5个立方数之和

华林于1770年提出华林问题
对任意一个正整数

  • 可以写成4个自然数的平方和,记为 g ( 2 ) = 4 g(2)=4 g(2)=4,由1770年拉格朗日证明
  • 可以写成9个自然数的立方和,记为 g ( 3 ) = 9 g(3)=9 g(3)=9,由1909年亚瑟·韦伊费列治证明。
  • 可以写成19个自然数的四次方和,记为 g ( 4 ) = 19 g(4)=19 g(4)=19,由1986年巴拉苏布拉玛尼安证明。

1964年,陈景润证明了 g ( 5 ) = 37 g(5)=37 g(5)=37
1940年,皮莱证明了 g ( 6 ) = 73 g(6)=73 g(6)=73
如果将自然数改为整数,那对应的数量记为 v ( n ) v(n) v(n)
现在已知 v ( 2 ) = g ( 2 ) = 4 , v ( 4 ) = g ( 4 ) , v ( 3 ) ∈ [ 4 , 5 ] v(2)=g(2)=4, v(4)=g(4), v(3) \in [4,5] v(2)=g(2)=4,v(4)=g(4),v(3)[4,5]

这里任意一个整数n,都有以下恒等式,可以表示为5个立方数之和:
n = n 3 + ( − n 3 − n − 6 6 ) 3 + ( n 3 − n − 6 6 ) 3 + ( n 3 − n 6 ) 3 + ( n 3 − n 6 ) 3 n=n^3+(\frac{-n^3-n-6}{6})^3+(\frac{n^3-n-6}{6})^3+(\frac{n^3-n}{6})^3+(\frac{n^3-n}{6})^3 n=n3+(6n3n6)3+(6n3n6)3+(6n3n)3+(6n3n)3
下面的数字可以表示为4个整数的立方和
6 n = ( n + 1 ) 3 + ( n − 1 ) 3 + ( − n ) 3 + ( − n ) 3 6n=(n+1)^3+(n-1)^3+(-n)^3+(-n)^3 6n=(n+1)3+(n1)3+(n)3+(n)3
6 n + 3 = n 3 + ( − n + 4 ) 3 + ( 2 n − 5 ) 3 + ( − 2 n + 4 ) 3 6n+3=n^3+(-n+4)^3+(2n-5)^3+(-2n+4)^3 6n+3=n3+(n+4)3+(2n5)3+(2n+4)3
18 n + 1 = ( 2 n + 14 ) 3 + ( − 2 n − 23 ) 3 + ( − 3 n − 26 ) 3 + ( 3 n + 30 ) 3 18n+1=(2n+14)^3+(-2n-23)^3+(-3n-26)^3+(3n+30)^3 18n+1=(2n+14)3+(2n23)3+(3n26)3+(3n+30)3
18 n + 7 = ( n + 2 ) 3 + ( 6 n − 1 ) 3 + ( 8 n − 2 ) 3 + ( − 9 n + 2 ) 3 18n+7=(n+2)^3+(6n-1)^3+(8n-2)^3+(-9n+2)^3 18n+7=(n+2)3+(6n1)3+(8n2)3+(9n+2)3
18 n + 8 = ( n − 5 ) 3 + ( − n + 14 ) 3 + ( − 3 n + 29 ) 3 + ( 3 n − 30 ) 3 18n+8=(n-5)^3+(-n+14)^3+(-3n+29)^3+(3n-30)^3 18n+8=(n5)3+(n+14)3+(3n+29)3+(3n30)3
54 n + 2 = ( 29484 n 2 + 2211 n + 43 ) 3 + ( − 29484 n 2 − 2157 n − 41 ) 3 + ( 9828 n 2 + 485 n + 4 ) 3 + ( − 9828 n 2 − 971 n − 22 ) 3 54n+2=(29484n^2+2211n+43)^3+(-29484n^2-2157n-41)^3+(9828n^2+485n+4)^3+(-9828n^2-971n-22)^3 54n+2=(29484n2+2211n+43)3+(29484n22157n41)3+(9828n2+485n+4)3+(9828n2971n22)3
54 n + 20 = ( 3 n − 11 ) 3 + ( − 3 n + 10 ) 3 + ( n + 2 ) 3 + ( − n + 7 ) 3 54n+20=(3n-11)^3+(-3n+10)^3+(n+2)^3+(-n+7)^3 54n+20=(3n11)3+(3n+10)3+(n+2)3+(n+7)3
216 n − 16 = ( 14742 n 2 − 2157 n + 82 ) 3 + ( − 14742 n 2 + 2211 n − 86 ) 3 + ( 4914 n 2 − 971 n + 44 ) 3 + ( − 4914 n 2 + 485 n − 8 ) 3 216n-16=(14742n^2-2157n+82)^3+(-14742n^2+2211n-86)^3+(4914n^2-971n+44)^3+(-4914n^2+485n-8)^3 216n16=(14742n22157n+82)3+(14742n2+2211n86)3+(4914n2971n+44)3+(4914n2+485n8)3
216 n + 92 = ( 3 n − 164 ) 3 + ( − 3 n + 160 ) 3 + ( n − 35 ) 3 + ( − n + 71 ) 3 216n+92=(3n-164)^3+(-3n+160)^3+(n-35)^3+(-n+71)^3 216n+92=(3n164)3+(3n+160)3+(n35)3+(n+71)3
Sum_of_four_cubes_problem

部分整数可以拆分成三个整数的立方和

N = x 3 + y 3 + z 3 N=x^3+y^3+z^3 N=x3+y3+z3, N ≠ 4 , 5 m o d    9 N\ne4,5\mod 9 N=4,5mod9
Heath-Brown 猜想:任何一个除以9不余4或5的整数都可以表示为3个立方数之和,并且有无穷多组。
如果这个猜想成立,那上面的任何一个整数都可以表示为4个立方数之和。
目前只有0,1,2这三个自然数可以表示为三个不高于四次的多项式的立方和。
a 3 + ( − a ) 3 + 0 3 = 0 ( 9 b 4 ) 3 + ( 3 b − 9 b 4 ) 3 + ( 1 − 9 b 3 ) 3 = 1 ( 1 + 6 c 3 ) 3 + ( 1 − 6 c 3 ) 3 + ( − 6 c 2 ) 3 = 2 a^{3}+(-a)^{3}+0^{3}=0 \\ (9b^{4})^{3}+(3b-9b^{4})^{3}+(1-9b^{3})^{3}=1 \\ (1+6c^{3})^{3}+(1-6c^{3})^{3}+(-6c^{2})^{3}=2 a3+(a)3+03=0(9b4)3+(3b9b4)3+(19b3)3=1(1+6c3)3+(16c3)3+(6c2)3=2除了上述表示,1还有其他的恒等式:
( 1 − 9 t 3 + 648 t 6 + 3888 t 9 ) 3 + ( − 135 t 4 + 3888 t 10 ) 3 + ( 3 t − 81 t 4 − 1296 t 7 − 3888 t 10 ) 3 = 1 (1-9 t^3+648 t^6+3888 t^9)^3+(-135 t^4+3888 t^{10})^3+(3 t-81 t^4-1296 t^7-3888 t^{10})^3=1 (19t3+648t6+3888t9)3+(135t4+3888t10)3+(3t81t41296t73888t10)3=1
1和2的恒等式可以合并成以下恒等式:
( 9 a x 4 − 6 b x 3 + b ) 3 + ( − 9 a x 4 + 6 b x 3 − 3 a x + b ) 3 + ( 9 a x 3 − 6 b x 2 + a ) 3 = 9 a b x ( a x − b ) + a 3 + 2 b 3 (9 a x^4-6 b x^3+b)^3+(-9 a x^4+6 b x^3-3 a x+b)^3+(9 a x^3-6 b x^2+a)^3 = 9 a b x(ax-b)+a^3+2 b^3 (9ax46bx3+b)3+(9ax4+6bx33ax+b)3+(9ax36bx2+a)3=9abx(axb)+a3+2b3
另外,3目前有3种立方和表示法
3 = 1 3 + 1 3 + 1 3 = 4 3 + 4 3 + ( − 5 ) 3 = 56993682122196238072 0 3 + ( − 569936821113563493509 ) 3 + ( − 472715493453327032 ) 3 3 = 1^3+1^3+1^3\\ =4^3+4^3+(-5)^3\\ =569936821221962380720³ + (-569936821113563493509)³ + (-472715493453327032)³ 3=13+13+13=43+43+(5)3=5699368212219623807203+(569936821113563493509)3+(472715493453327032)3

下面是 N = x 3 + y 3 + z 3 N=x^3+y^3+z^3 N=x3+y3+z3 的最小解,其中 N ≠ 4 , 5 m o d    9 , N ≤ 100 N\ne 4,5 \mod 9, N \le 100 N=4,5mod9,N100

 N    x   y   z
 1:   0   0   1
 2:   0   1   1
 3:   1   1   1
 6:  -1  -1   2
 7:   0  -1   2
 8:   0   0   2
 9:   0   1   2
10:   1   1   2
11:  -2  -2   3
12:   7  10 -11
15:  -1   2   2
16: -511 -1609 1626
17:   1   2   2
18:  -1  -2   3
19:   0  -2   3
20:   1  -2   3
21: -11 -14  16
24: -2901096694 -15550555555 15584139827
25:  -1  -1   3
26:   0  -1   3
27:   0   0   3
28:   0   1   3
29:   1   1   3
30: -283059965 -2218888517 2220422932
33: 8866128975287528 -8778405442862239 -2736111468807040
34:  -1   2   3
35:   0   2   3
36:   1   2   3
37:   0  -3   4
38:   1  -3   4
39: 117367 134476 -159380
42: -80538738812075974 80435758145817515 12602123297335631
43:   2   2   3
44:  -5  -7   8
45:   2  -3   4
46:  -2   3   3
47:   6   7  -8
48: -23 -26  31
51: 602 659 -796
52: 23961292454 60702901317 -61922712865
53:  -1   3   3
54:  -7 -11  12
55:   1   3   3
56: -11 -21  22
57:   1  -2   4
60:  -1  -4   5
61:   0  -4   5
62:   2   3   3
63:   0  -1   4
64:   0   0   4
65:   0   1   4
66:   1   1   4
69:   2  -4   5
70:  11  20 -21
71:  -1   2   4
72:   7   9 -10
73:   1   2   4
74: -284650292555885 66229832190556 283450105697727
75: 4381159 435203083 -435203231
78:  26  53 -55
79: -19 -33  35
80: 69241 103532 -112969
81:  10  17 -18
82: -11 -11  14
83:  -2   3   4
84: -8241191 -41531726 41639611
87: -1972 -4126 4271
88:   3  -4   5
89:   6   6  -7
90:  -1   3   4
91:   0   3   4
92:   1   3   4
93:  -5  -5   7
96: 10853 13139 -15250
97:  -1  -3   5
98:   0  -3   5
99:   2   3   4
100: -3  -6   7

参考资料:
人类第一次将33写成了3个整数的立方和
How to search the solutions of n=x3+y3+z3
Sums of Three Cubes

任何一个有理数都可以表示成三个有理数的立方和

a = ( a 3 − 3 6 3 2 a 2 + 3 4 a + 3 6 ) 3 + ( − a 3 + 3 5 a + 3 6 3 2 a 2 + 3 4 a + 3 6 ) 3 + ( a 3 a 2 + 3 5 a 3 2 a 2 + 3 4 a + 3 6 ) 3 a=(\frac{a^3-3^6}{3^2a^2+3^4a+3^6})^3+(\frac{-a^3+3^5a+3^6}{3^2a^2+3^4a+3^6})^3+(\frac{a^3a^2+3^5a}{3^2a^2+3^4a+3^6})^3 a=(32a2+34a+36a336)3+(32a2+34a+36a3+35a+36)3+(32a2+34a+36a3a2+35a)3

部分整数可拆分成两个有理数的立方和

N = ( x / z ) 3 + ( y / z ) 3 N=(x/z)^3+(y/z)^3 N=(x/z)3+(y/z)3 x 3 + y 3 = N z 3 x^3+y^3=Nz^3 x3+y3=Nz3
有多少个整数可以写成两个有理数(分数)的三次方之和? 链接

利用以下恒等式
a 3 − b 3 = ( a 4 − 2 a b 3 a 3 + b 3 ) 3 − ( b 4 − 2 a 3 b a 3 + b 3 ) 3 a 3 + b 3 = ( a 4 + 2 a b 3 a 3 − b 3 ) 3 − ( b 4 + 2 a 3 b a 3 − b 3 ) 3 a^3-b^3=(\frac{a^4-2a b^3}{a^3+b^3})^3-(\frac{b^4-2a^3b}{a^3+b^3})^3\\ a^3+b^3=(\frac{a^4+2a b^3}{a^3-b^3})^3-(\frac{b^4+2a^3b}{a^3-b^3})^3 a3b3=(a3+b3a42ab3)3(a3+b3b42a3b)3a3+b3=(a3b3a4+2ab3)3(a3b3b4+2a3b)3 可以得到:如果一个有理数可以写成一对不同相等的有理数的立方和,那么这个有理数可以写成无数对不同相等的有理数的立方和。

另外,如果 a x 3 + b y 3 = c z 3 ax^3+by^3=cz^3 ax3+by3=cz3,那么通过以下恒等式可以得到无穷的解:
a ( − b x y 3 − c x z 3 ) 3 + b ( a x 3 y + c y z 3 ) 3 = c ( − a x 3 z + b y 3 z ) 3 a(-bxy^3-cxz^3)^3+b(ax^3y+cyz^3)^3=c(-ax^3z+by^3z)^3 a(bxy3cxz3)3+b(ax3y+cyz3)3=c(ax3z+by3z)3

最后, N = ( x / z ) 3 + ( y / z ) 3 N=(x/z)^3+(y/z)^3 N=(x/z)3+(y/z)3 的最小解如下:

  N       x      y      z
  1       0      1      1
  2       1      1      1
  6      17     37     21
  7      -1      2      1
  8       0      2      1
  9       1      2      1
 12      19     89     39
 13       2      7      3
 15     397    683    294
 16       2      2      1
 17      -1     18      7
 19      -2      3      1
 20       1     19      7
 22   17299  25469   9954
 26      -1      3      1
 27       0      3      1
 28       1      3      1
 30     107    163     57
 31     -65    137     42
 33     523   1853    582
 34    -359    631    182
 35       2      3      1
 37      -3      4      1
 42     -71    449    129
 43       1      7      2
 48      34     74     21
 49      -2     11      3
 50  -11267  23417   6111
 51   62641 730511 197028
 53   -1819   1872    217
 54       3      3      1
 56      -2      4      1
 58  -14653  28747   7083
 61      -4      5      1
 62       7     11      3
 63      -1      4      1
 64       0      4      1
 65       1      4      1
 67    1208   5353   1323
 68 -472663 2538163 620505
 69  -10441  15409   3318
 70      17     53     13
 71    -126    197     43
 72       2      4      1
 75  -11951  17351   3606
 78      53   5563   1302
 79      -4     13      3
 84     323    433    111
 85 -2404889 2570129 330498
 86       5     13      3
 87 -907929611 1176498611 216266610
 89      36     53     13
 90    -431   1241    273
 91       3      4      1
 92   -3547  25903   5733
 94 -15616184186396177 15642626656646177 590736058375050
 96      38    178     39
 97      -5     14      3
 98      -3      5      1

参考资料:
oeis.org x y z
Hisanori Mishima, Solutions of Diophantine equation x3+y3=A z3 $

更多的资料可以查看
mathworld wolfram
Mathematician’s Secret Room
mathpages
oeis

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值