中学数学平面几何定理集

前言

前面写过了 中学数学公式集 ,但中学数学还有一些定理形式的知识,这些不方便用公式来表示。因此额外编写一篇关于几何定理的文章。

欧几里德的平面五大公理

序号内容
公理1任意一点到另外任意一点可以画直线 。
公理2一条有限线段可以继续延长。
公理3以任意点为中心及任意的距离可以画圆。
公理4凡是直角都彼此相等。
公理5同平面内一条直线和另外两条直线相交,若在某一侧的两个内角和小于二直角的和,则这二直线经无限延长后在这一侧相交。

注意:公理推理其他命题的起点,是无法被其他命题推理出来的。但公理5并非在所有二维的面上都成立,所以把满足它的几何推理被称为欧几里德几何,简称欧氏几何。便于与后面的黎曼几何进行区分。

直线与角

内容定理逆定理
直线过两点有且只有一条直线。
线段连接两点的所有线中,线段的长度最短。此时线段的长称为两点的距离。
平行经过直线外一点,有且只有一条直线与这条直线平行。
平行如果两条直线都和第三条直线平行,这两条直线也互相平行。
垂直过一点有且只有一条直线和指定直线垂直。
垂直直线外一点与直线上各点连接的所有线段中,垂线段最短。
垂直平分线线段垂直平分线上的点到这条线段两个端点的距离相等。和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
角平分线在角的平分线上的点到这个角的两边的距离相等。到一个角的两边的距离相同的点,在这个角的平分线上。
平行同位角相等, 两直线平行两直线平行,同位角相等
平行内错角相等,两直线平行两直线平行,内错角相等
平行同旁内角互补,两直线平行两直线平行,同旁内角互补

三角形

三角形三个顶点为 A , B , C A,B,C A,B,C, 记为 Δ A B C \Delta ABC ΔABC。角A的对边BC通常用a表示,角B的对边AC通常用b表示,角C的对边AB通常用c表示。

分类

类别定义
锐角三角形三个角都是锐角的三角形
直角三角形有一角都是直角的三角形
钝角三角形有一角都是钝角的三角形
等腰三角形有两条边相等的三角形
等边三角形三条边都相等的三角形

三角中心

定义向量表示
重心三条中线的交点。物理上的质心。 O A → + O B → + O C → = 0 \overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=0 OA +OB +OC =0
垂心三条高所在直线的交点。 O A → ⋅ O B → = O B → ⋅ O C → = O C → ⋅ O A → \overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OC} \cdot \overrightarrow{OA} OA OB =OB OC =OC OA
内心三条角平分线的交点。内切接圆的中心。 a O A → + b O B → + c O C → = 0 a\overrightarrow{OA}+b\overrightarrow{OB}+c\overrightarrow{OC}=0 aOA +bOB +cOC =0
外心三边的垂直平分线的交点。外接圆的中心。 ∣ O A ∣ 2 = ∣ O B ∣ 2 = ∣ O C ∣ 2 |OA|^2=|OB|^2=|OC|^2 OA2=OB2=OC2

百科

九点圆:三角形各边的垂足、中心共圆,同时这圆也经过垂心与各顶点的中心。
欧拉线:在任意三角形中,垂心、外心、重心、九点圆心这些点共线。

相似与全等

如果 Δ A B C \Delta ABC ΔABC Δ A ′ B ′ C ′ \Delta A'B'C' ΔABC相似,记为 Δ A B C ∼ Δ A ′ B ′ C ′ \Delta ABC \sim \Delta A'B'C' ΔABCΔABC。同时有:
∠ A ∠ A ′ = ∠ B ∠ B ′ = ∠ C ∠ C ′ = 1 ∣ A B ∣ ∣ A ′ B ′ ∣ = ∣ A C ∣ ∣ A ′ C ′ ∣ = ∣ B C ∣ ∣ B ′ C ′ ∣ = k S Δ A B C = k 2 S Δ A ′ B ′ C ′ \frac{\angle A}{\angle A'}=\frac{\angle B}{\angle B'}=\frac{\angle C}{\angle C'}=1 \\ \frac{|AB|}{|A'B'|}=\frac{|AC|}{|A'C'|}=\frac{|BC|}{|B'C'|}=k \\ S_{\Delta ABC}=k^2S_{\Delta A'B'C'} AA=BB=CC=1ABAB=ACAC=BCBC=kSΔABC=k2SΔABC
其中,k为比例系数。

如果 Δ A B C \Delta ABC ΔABC Δ A ′ B ′ C ′ \Delta A'B'C' ΔABC全等,记为 Δ A B C ≅ Δ A ′ B ′ C ′ \Delta ABC \cong \Delta A'B'C' ΔABCΔABC。同时有:
∠ A ∠ A ′ = ∠ B ∠ B ′ = ∠ C ∠ C ′ = 1 ∣ A B ∣ ∣ A ′ B ′ ∣ = ∣ A C ∣ ∣ A ′ C ′ ∣ = ∣ B C ∣ ∣ B ′ C ′ ∣ = 1 S Δ A B C = S Δ A ′ B ′ C ′ \frac{\angle A}{\angle A'}=\frac{\angle B}{\angle B'}=\frac{\angle C}{\angle C'}=1 \\ \frac{|AB|}{|A'B'|}=\frac{|AC|}{|A'C'|}=\frac{|BC|}{|B'C'|}=1 \\ S_{\Delta ABC}=S_{\Delta A'B'C'} AA=BB=CC=1ABAB=ACAC=BCBC=1SΔABC=SΔABC

名称简写全等判定相似判定
边边边SSS三条边都对应相等的两个三角形全等三边成比例的两个三角形相似
边角边SAS两边和它们之间的夹角对应相等的两个三角形全等两边成比例且夹角相等两个三角形相似
角边角ASA两角和它们之间的夹边对应相等的两个三角形全等-
角角边AAS两个角和其中一个角的对边对应相等的两个三角形全等-
角角AA-两角对应相等两个三角形相似
斜边直角边HL斜边和一条直角边对应相等的两个三角形全等一条直角边与斜边成比例的两个直角三角形相似

其他

定理内容
内角和三角形三个内角的和等于180°
密铺任意的三角形都可以密铺平面
三角不等式三角形任意两边之和大于第三边,即 ∣ A B ∣ < ∣ A C ∣ + ∣ B C ∣ |AB| < |AC| + |BC| AB<AC+BC
勾股定理直角三角形的斜边长的平方等于两直角边长的平方和,即 c 2 = a 2 + b 2 c^2=a^2+b^2 c2=a2+b2
勾股定理(逆定理)如果三角形存在两边长之平方和等于第三边长的平方,那这个三角形是直角三角形,并且最长边对应的角是直角。
直角三角形性质直角三角形斜边上的中线等于斜边上的一半
等腰三角形性质等腰三角形的顶角平分线、底边上的中线和高互相重合
勾股定理 c 2 = a 2 + b 2 c^2=a^2+b^2 c2=a2+b2
余弦定理 c 2 = a 2 + b 2 − 2 a b   c o s   C c^2=a^2+b^2-2ab \ cos\ C c2=a2+b22ab cos C
正弦定理 a sin ⁡ ( A ) = b sin ⁡ ( B ) = c sin ⁡ ( C ) = 2 R \frac{a}{\sin(A)}=\frac{b}{\sin(B)}=\frac{c}{\sin(C)}=2R sin(A)a=sin(B)b=sin(C)c=2R
Heron(海伦)公式 S = p ( p − a ) ( p − b ) ( p − c ) p = a + b + c 2 S=\sqrt{p(p-a)(p-b)(p-c)}\\p=\frac{a+b+c}{2} S=p(pa)(pb)(pc) p=2a+b+c
面积公式 1 2 ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ \frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix} 21 x1x2x3y1y2y3111 三个顶点坐标为 ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) (x_1,y_1),(x_2,y_2),(x_3,y_3) (x1,y1),(x2,y2),(x3,y3)
外接圆半径 R = a b c / ( 4 S ) R=abc/(4S) R=abc/(4S)
内切圆半径 r = 2 S / ( a + b + c ) r=2S/(a+b+c) r=2S/(a+b+c)
欧拉三角公式 1 R + d + 1 R − d = 1 r \frac{1}{R+d}+\frac{1}{R-d}=\frac{1}{r} R+d1+Rd1=r1 R是外接圆半径,r是内切圆半径,d是圆心距

四边形

平行四边形、菱形、矩形和正方形

平行四边形菱形矩形正方形
定义有两组对边分别平行的四边形有一组邻边相等的平行四边形有一个内角是直角的平行四边形有一组邻边相等且有一个内角是直角的平行四边形
继承关系-菱形具有平行四边形的一切性质矩形具有平行四边形的一切性质正方形具有平行四边形、菱形和矩形的一切性质
对边平行且相等四条边都相等-四条边都相等
对角相等,两邻角互补-四个角都是直角四个角都是直角
对角线对角线互相平分对角线互相垂直平分且平分每一组对角对角线长度相等且互相平分对角线长度相等且互相垂直平分
对称轴-2条对称轴,即两条对角线所在直线2条对称轴4条对称轴

其他性质:
1.连接任意四边形各边的中点所得图形是平行四边形。
2.过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
3.平行四边形对角线把平行四边形面积分成四等分。
4.平行四边形是中心对称图形,对称中心是两条对角线的交点。
5.平行四边形的面积等于底和高的积。
6.平行四边形四条边的平方和等于对角线的平方和。

梯形

定义:只有一组对边平行的四边形是梯形
性质:
1.中位线平行于两底,且长度等于两底的平均数
2.梯形的面积等于中位线和高的积。

两条腰相等的梯形,称为等腰梯形。
等腰梯形两个底角相等。两条对角线相等。

其中一个角是直角的梯形,称为直角梯形。

其他

定理内容
内角和四边形四个内角的和等于360°
密铺任意的四边形都可以密铺平面
欧拉四边形定理abcd为四边形的边长,pq为四边形的对角线长,x为对角线中心的距离,则有 a 2 + b 2 + c 2 + d 2 = p 2 + q 2 + 4 x 2 a^2+b^2+c^2+d^2=p^2+q^2+4x^2 a2+b2+c2+d2=p2+q2+4x2
四边形的余弦定理 p 2 q 2 = a 2 c 2 + b 2 d 2 − 2 a b c d cos ⁡ ( A + C ) p^2q^2=a^2c^2+b^2d^2-2abcd\cos(A+C) p2q2=a2c2+b2d22abcdcos(A+C)
面积Bretschneider公式 S = ( s − a ) ( s − b ) ( s − c ) ( s − d ) − a b c d cos ⁡ 2 ( A + C 2 ) S=\sqrt{(s-a)(s-b)(s-c)(s-d)-abcd\cos^2(\frac{A+C}{2})} S=(sa)(sb)(sc)(sd)abcdcos2(2A+C) , 这里 s = 1 2 ( a + b + c + d ) s=\frac{1}{2}(a+b+c+d) s=21(a+b+c+d)
面积 S = 1 4 4 p 2 q 2 − ( a 2 + c 2 − b 2 − d 2 ) 2 S=\frac{1}{4}\sqrt{4p^2q^2-(a^2+c^2-b^2-d^2)^2} S=414p2q2(a2+c2b2d2)2
面积 S = 1 2 p 2 q 2 − ( m 2 − n 2 ) 2 S=\frac{1}{2}\sqrt{p^2q^2-(m^2-n^2)^2} S=21p2q2(m2n2)2 , m,n是双中线,并有 p 2 + q 2 = 2 ( m 2 + n 2 ) p^2+q^2=2(m^2+n^2) p2+q2=2(m2+n2)
面积(向量) S = 1 2 ∣ A C × B D ∣ S=\frac{1}{2}|AC \times BD| S=21AC×BD
外接圆半径 R = ( a c + b d ) ( a d + b c ) ( a b + c d ) / ( 4 S ) R=\sqrt{(ac+bd)(ad+bc)(ab+cd)}/(4S) R=(ac+bd)(ad+bc)(ab+cd) /(4S)
双心四边形 1 ( R + d ) 2 + 1 ( R − d ) 2 = 1 r 2 \frac{1}{(R+d)^2}+\frac{1}{(R-d)^2}=\frac{1}{r^2} (R+d)21+(Rd)21=r21 R是外接圆半径,r是内切圆半径,d是圆心距

多边形

下面公式中多边形的顶点数为 n n n

定理内容备注
内角和 ( n − 2 ) × 18 0 ∘ (n-2)\times 180^\circ (n2)×180
外角和 36 0 ∘ 360^\circ 360
对角线数量 1 2 n ( n − 3 ) \frac{1}{2}n(n-3) 21n(n3)
高斯面积公式 1 2 ∣ ∑ i = 1 n ( x i y i + 1 − x i + 1 y i ) ∣ \frac{1}{2}|\sum_{i=1}^n(x_iy_{i+1}-x_{i+1}y_i)| 21i=1n(xiyi+1xi+1yi)多边形的顶点坐标为 ( x i , y i ) (x_i,y_i) (xi,yi)
正多边形面积 S = a 2 4 n tan ⁡ ( 18 0 ∘ / n ) S=\frac{a^2}{4}\frac{n}{\tan(180^\circ/n)} S=4a2tan(180/n)n边长为 a a a
海伦公式-圆内接三角形面积 S 2 = ( p − a ) ( p − b ) ( p − c ) p S^2=(p-a)(p-b)(p-c)p S2=(pa)(pb)(pc)p a , b , c a,b,c a,b,c是三角形的边长, p = a + b + c 2 p=\frac{a+b+c}{2} p=2a+b+c
婆罗摩笈多公式-圆内接四角形面积 S 2 = ( p − a ) ( p − b ) ( p − c ) ( p − d ) S^2=(p-a)(p-b)(p-c)(p-d) S2=(pa)(pb)(pc)(pd) a , b , c , d a,b,c,d a,b,c,d是四边形的边长, p = a + b + c + d 2 p=\frac{a+b+c+d}{2} p=2a+b+c+d
圆内接五、六边形面积 u = 16 S 2 t 2 = u − 4 s 2 + s 1 2 t 3 = 8 s 3 + s 1 t 2 − 16 s 6 t 4 = t 2 2 − 64 s 4 + 64 s 1 s 6 t 5 = 128 s 5 + 32 t 2 s 6 u t 4 3 + t 3 2 t 4 2 − 16 t 3 3 t 5 − 18 u t 3 t 4 t 5 − 27 u 2 t 5 2 = 0 u=16S^2\\t_2=u-4s_2+s_1^2\\t_3=8s_3+s_1t_2-16\sqrt{s_6}\\t_4=t_2^2-64s_4+64s_1\sqrt{s_6}\\t_5=128s_5+32t_2\sqrt{s_6}\\ut_4^3+t_3^2t_4^2-16t^3_3t_5-18ut_3t_4t_5-27u^2t^2_5=0 u=16S2t2=u4s2+s12t3=8s3+s1t216s6 t4=t2264s4+64s1s6 t5=128s5+32t2s6 ut43+t32t4216t33t518ut3t4t527u2t52=0 s i = Π i ( a 1 2 , a 2 2 , a 3 2 , a 4 2 , a 5 2 , a 6 2 ) s_i=\Pi_i(a_1^2,a_2^2,a_3^2,a_4^2,a_5^2,a_6^2) si=Πi(a12,a22,a32,a42,a52,a62), 由Robbins (1995)提出,详见 五边形 六边形
可尺规作图的正多边形 n = 2 a 3 b 5 c 1 7 d 25 7 e 6553 7 f 0 ≤ a , 0 ≤ b , c , d , e , f ≤ 1 n=2^a3^b5^c17^d257^e65537^f\\0\le a,0\le b,c,d,e,f\le1 n=2a3b5c17d257e65537f0a,0b,c,d,e,f1目前已知的费马质数 F n = 1 + 2 2 n , ( n = 0 , 1 , 2 , 3 , 4 ) F_n=1+2^{2^n}, (n=0,1,2,3,4) Fn=1+22n,(n=0,1,2,3,4)
Poncelet’s Porism(彭赛列闭合定理)平面上给定两条圆锥曲线Ci和Co,若存在一个N边形外切于Co且内接于Ci,则过Ci的每一个点都能作出一个外切于Co且内接于Ci的N边形。Poncelet’s Porism
双心五边形 x = ( R 2 − d 2 ) / ( 2 r ) ( R − x ) ( R + x ) 2 = R ( R 2 − d 2 ) x=(R^2- d^2)/(2r)\\(R-x)(R+x)^2 = R(R^2-d^2) x=(R2d2)/(2r)(Rx)(R+x)2=R(R2d2)R是外接圆半径,r是内切圆半径,d是圆心距

彭赛列闭合定理示例:如下图,存在无数个三角形,共用同一个内切圆和外接圆:
在这里插入图片描述

圆锥曲线

圆形

定义:在平面内,到定点的距离等于定长的点的集合叫作圆。

定理内容
圆心角定理对于半径相同的圆,相等的圆心角所对弧相等,所对的弦相等,所对弦的弦心距相等。
圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半
弦切角定理弦切角等于它所夹的弧对的圆周角
切线长定理从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角
相交弦定理圆内两条弦 A B AB AB C D CD CD相交于P点,被交点分成的两条线段长的乘积相等,即 ∣ P A ∣ × ∣ P B ∣ = ∣ P C ∣ × ∣ P D ∣ |PA|\times|PB|=|PC|\times|PD| PA×PB=PC×PD
切割线定理圆的一条切线与一条割线相交于P点,切线交圆于C点,割线交圆于A、B两点,则有 ∣ P A ∣ × ∣ P B ∣ = ∣ P C ∣ 2 |PA| \times |PB|=|PC|^2 PA×PB=PC2

椭圆

定义:在平面内,与两个定点F1,F2的距离的和等于常数 2 a 2a 2a的点的轨迹称为椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
假设两个焦点坐标为 ( ± c , 0 ) (\pm c,0) (±c,0), 其中 0 ≤ c < a 0\le c<a 0c<a,那么椭圆的方程为: x 2 a 2 + y 2 a 2 − c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1 a2x2+a2c2y2=1 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1,其中 a 2 − b 2 = c 2 a^2-b^2=c^2 a2b2=c2
椭圆与x轴交于两点 ( ± a , 0 ) (\pm a,0) (±a,0), 这两点的距离称为长轴。椭圆与y轴交于两点 ( 0 , ± b ) (0,\pm b) (0,±b), 这两点的距离称为短轴。
离心率: e = c / a ∈ [ 0 , 1 ) e=c/a \in [0,1) e=c/a[0,1)
面积: S = π a b S=\pi a b S=πab
周长(定义 λ = a − b a + b λ=\frac{a-b}{a+b} λ=a+bab): L = π ( a + b ) ( 1 + λ 2 4 + λ 4 64 + λ 6 256 + 25 λ 8 16384 + . . . ) ≈ π ( a + b ) 64 − 3 λ 4 64 − 16 λ 2 ≈ π 2 ( a 2 + b 2 ) ≈ π [ 3 ( a + b ) − ( a + 3 b ) ( 3 a + b ) ] ≈ π ( a + b ) ( 1 + 3 λ 10 + 4 − 3 λ ) \begin{aligned}L&=\pi(a+b)(1+\frac{λ^2}{4}+\frac{λ^4}{64}+\frac{λ^6}{256}+\frac{25λ^8}{16384}+...)\\&\approx \pi(a+b)\frac{64-3λ^4}{64-16λ^2}\\&\approx \pi\sqrt{2(a^2+b^2)}\\&\approx\pi[3(a+b)-\sqrt{(a+3b)(3a+b)}]\\&\approx\pi(a+b)(1+\frac{3λ}{10+\sqrt{4-3λ}})\end{aligned} L=π(a+b)(1+4λ2+64λ4+256λ6+1638425λ8+...)π(a+b)6416λ2643λ4π2(a2+b2) π[3(a+b)(a+3b)(3a+b) ]π(a+b)(1+10+43λ 3λ)
椭圆的周长无法用初等函数表示,其中倒数两行由 Ramanujan(拉马努金)发现。
反射定理:从一个焦点发出的光线,经过椭圆反射后,必定汇聚到另一个焦点。

双曲线

定义:平面内,到两个定点F1,F2的距离之差的绝对值为常数2a的点的轨迹称为双曲线。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
假设两个焦点坐标为 ( ± c , 0 ) (\pm c,0) (±c,0), 其中 0 < a < c 0<a<c 0<a<c,那么双曲线的方程为: x 2 a 2 − y 2 c 2 − a 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{c^2-a^2}=1 a2x2c2a2y2=1 x 2 a 2 − y 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2b2y2=1,其中 a 2 + b 2 = c 2 a^2+b^2=c^2 a2+b2=c2
双曲线与x轴交于两点 ( ± a , 0 ) (\pm a,0) (±a,0), 这两点的距离称为实轴。定义其虚轴的两个点为 ( 0 , ± b ) (0,\pm b) (0,±b),刚好对应其共轭双曲线 y 2 b 2 − x 2 a 2 = 1 \frac{y^2}{b^2}-\frac{x^2}{a^2}=1 b2y2a2x2=1的实轴。
离心率: e = c / a > 1 e=c/a > 1 e=c/a>1
渐近线: y = ± b a x y=\pm \frac{b}{a}x y=±abx
反射定理:从一个焦点发出的光线,经过双曲线任意一条分支反射后,必定反射汇聚到另一个焦点。

抛物线

定义:平面内,与一定点F和一定直线的距离相等的点的轨迹。
其中定点F叫抛物线的焦点,定直线叫抛物线的准线。
假设焦点坐标为 ( p / 2 , 0 ) (p/2,0) (p/2,0), 准线方程为 x = − p / 2 x=-p/2 x=p/2,那么抛物线的方程为: y 2 = 2 p x y^2=2px y2=2px
离心率: e = 1 e=1 e=1
反射定理:从焦点发出的光线,经过抛物线反射后的所有光线互相平行,且均与准线垂直。

通用性质

圆锥曲线,包含椭圆、双曲线、抛物线,这三类都具备圆锥曲线的所有性质。
定义1:由一平面截一圆锥面得到的曲线。
定义2:在平面内, 与定点F的距离和与定直线L的距离之比为常数e的点的轨迹称为圆锥曲线。(此定义不适用于圆。)
这个定点是圆锥曲线的一个焦点,这条直线是圆锥曲线的一条准线。一个焦点到其最近的准线的距离称为焦准距 p.
在极坐标中,以原点为焦点,圆锥曲线的方程为 ρ = e p 1 − e cos ⁡ θ \rho=\frac{ep}{1-e\cos \theta} ρ=1ecosθep

椭圆抛物线双曲线
参数半径r半长轴a,半短轴b, b ≤ a b \le a ba焦准距p半实轴a,半虚轴b
曲线方程 x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1 y 2 = 2 p x y^2=2px y2=2px x 2 a 2 − y 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2b2y2=1
半焦距 c = 0 c=0 c=0 c = a 2 − b 2 c=\sqrt{a^2-b^2} c=a2b2 - c = a 2 + b 2 c=\sqrt{a^2+b^2} c=a2+b2
焦点 ( 0 , 0 ) (0,0) (0,0) ( ± c , 0 ) (\pm c,0) (±c,0) ( p / 2 , 0 ) (p/2, 0) (p/2,0) ( ± c , 0 ) (\pm c,0) (±c,0)
离心率 e = 0 e=0 e=0 e = c / a ∈ [ 0 , 1 ) e=c/a\in[0,1) e=c/a[0,1) e = 1 e=1 e=1 e = c / a > 1 e=c/a > 1 e=c/a>1
准线方程- x = ± a 2 c x=\pm\frac{a^2}{c} x=±ca2 x = − p / 2 x=-p/2 x=p/2 x = ± a 2 c x=\pm\frac{a^2}{c} x=±ca2
切线方程 x 0 x + y 0 y = r 2 x_0x+y_0y=r^2 x0x+y0y=r2 x 0 a 2 x + y 0 b 2 y = 1 \frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1 a2x0x+b2y0y=1 y 0 y = p ( x 0 + x ) y_0y=p(x0+x) y0y=p(x0+x) x 0 a 2 x − y 0 b 2 y = 1 \frac{x_0}{a^2}x-\frac{y_0}{b^2}y=1 a2x0xb2y0y=1
名称内容备注
五点定理经过平面内五个点的圆锥曲线有且只有一条任意三个点不共线
五直线定理相切于平面内五条直线的圆锥曲线有且只有一条任意三条直线不共点
Pascal(帕斯卡)定理圆锥曲线的内接六边形的三组对边的交点共线
Brianchon(布里昂雄)定理圆锥曲线的外切六边形的三组对边的交点共线

总结

本篇介绍了平面几何定理集,因篇幅限制,空间几何、解析几何等内容还会在其他文章进行补充。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值