中学数学公式集

写这博客源自于我对数学的喜好,对学过的数学知识进行积累,温故而知新。


前言

本文记载着中学时候涉及到的数学公式,所有公式均可以用高中知识进行证明。
而涉及微积分、复数、矩阵等高等数学内容,将在后续《大学数学公式集》进行收录。


代数学

多项式恒等式

名字内容
平方差 a 2 − b 2 = ( a + b ) ( a − b ) a^2-b^2=(a+b)(a-b) a2b2=(a+b)(ab)
立方和/差 a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) a^3 \pm b^3=(a \pm b)(a^2 \mp ab+b^2) a3±b3=(a±b)(a2ab+b2)
完全平方 ( a ± b ) 2 = a 2 ± 2 a b + b 2 (a \pm b)^2=a^2 \pm 2ab + b^2 (a±b)2=a2±2ab+b2
完全立方 ( a ± b ) 3 = a 3 ± 3 a 2 b + 3 a b 2 ± b 3 (a \pm b)^3=a^3 \pm 3a^2b + 3ab^2 \pm b^3 (a±b)3=a3±3a2b+3ab2±b3
二项式 ( a + b ) n = ∑ k = 0 n C n k a k b n − k (a + b)^n=\sum_{k=0}^n C_n^k a^kb^{n-k} (a+b)n=k=0nCnkakbnk
拉格朗日恒等式 ( a 2 + b 2 ) ( c 2 + d 2 ) = ( a c + b d ) 2 + ( a d − b c ) 2 ( ∑ i = 1 n a i 2 ) ( ∑ i = 1 n b i 2 ) = ( ∑ i = 1 n a i b i ) 2 + ∑ 1 ≤ i < ≤ j < n ( a i b j − a j b i ) 2 (a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2\\(\sum_{i=1}^na_i^2) (\sum_{i=1}^nb_i^2) =(\sum_{i=1}^na_ib_i)^2+\sum_{1\le i < \le j < n}(a_ib_j-a_jb_i)^2 (a2+b2)(c2+d2)=(ac+bd)2+(adbc)2(i=1nai2)(i=1nbi2)=(i=1naibi)2+1i<≤j<n(aibjajbi)2
欧拉公式 a 3 + b 3 + c 3 − 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − a c − b c ) a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc) a3+b3+c33abc=(a+b+c)(a2+b2+c2abacbc)
三立方数和 ( 9 n 4 ) 3 + ( 3 n − 9 n 4 ) 3 + ( 1 − 9 n 3 ) 3 = 1 ( 1 + 6 n 3 ) 3 + ( 1 − 6 n 3 ) 3 + ( − 6 c 2 ) 3 = 2 (9n^4)^3+(3n-9n^4)^3+(1-9n^3)^3=1\\(1+6n^3)^3+(1-6n^3)^3+(-6c^2)^3=2 (9n4)3+(3n9n4)3+(19n3)3=1(1+6n3)3+(16n3)3+(6c2)3=2
拉马努金恒等式 ( 3 a 2 + 5 a b − 5 b 2 ) 3 + ( 4 a 2 − 4 a b + 6 b 2 ) 3 + ( 5 a 2 − 5 a b − 3 b 2 ) 3 = ( 6 a 2 − 4 a b + 4 b 2 ) 3 (3a^2+5ab-5b^2)^3+(4a^2-4ab+6b^2)^3+(5a^2-5ab-3b^2)^3=(6a^2-4ab+4b^2)^3 (3a2+5ab5b2)3+(4a24ab+6b2)3+(5a25ab3b2)3=(6a24ab+4b2)3

特殊数列

名字012345678910
斐波那契数列1123581321345589
阶乘数列1126241207205040403203628803628800
Catalan数112514421324291430486216796
伯努利数1 − 1 2 -\frac{1}{2} 21 1 6 \frac{1}{6} 610 − 1 30 -\frac{1}{30} 3010 1 42 \frac{1}{42} 4210 − 1 30 -\frac{1}{30} 3010 5 66 \frac{5}{66} 665

数列求和

名字内容备注
等差数列 ∑ k = 0 n ( a + k d ) = ( a + d n 2 ) ( n + 1 ) \sum_{k=0}^n (a+kd)=(a+\frac{dn}{2})(n+1) k=0n(a+kd)=(a+2dn)(n+1)
等比数列 ∑ k = 0 n a q k = a ( q n + 1 − 1 ) q − 1 \sum_{k=0}^n aq^k=\frac{a(q^{n+1}-1)}{q-1} k=0naqk=q1a(qn+11) q ≠ 1 q \ne 1 q=1
自然数列 ∑ k = 1 n k = 1 2 n ( n + 1 ) \sum_{k=1}^n k =\frac{1}{2}n(n+1) k=1nk=21n(n+1)
平方数列 ∑ k = 1 n k 2 = 1 6 n ( n + 1 ) ( 2 n − 1 ) \sum_{k=1}^n k^2=\frac{1}{6}n(n+1)(2n-1) k=1nk2=61n(n+1)(2n1)
立方数列 ∑ k = 1 n k 3 = 1 4 n 2 ( n + 1 ) 2 \sum_{k=1}^n k^3=\frac{1}{4}n^2(n+1)^2 k=1nk3=41n2(n+1)2
高次数列-Faulhaber公式 ∑ k = 1 n k p = 1 p + 1 ∑ k = 0 p C p + 1 k B k n p − k + 1 \sum_{k=1}^n k^p=\frac{1}{p+1}\sum_{k=0}^p C_{p+1}^kB_kn^{p-k+1} k=1nkp=p+11k=0pCp+1kBknpk+1伯努利数: ∑ k = 0 p C p + 1 k B k ≡ 0 \sum_{k=0}^p C_{p+1}^kB_k \equiv 0 k=0pCp+1kBk0
余弦 ∑ k = 0 n cos ⁡ ( k x ) = sin ⁡ ( x ) + sin ⁡ ( n x ) + sin ⁡ ( ( n + 1 ) x ) 2 sin ⁡ ( x ) \sum_{k=0}^n \cos(kx)=\frac{\sin (x)+\sin (nx)+\sin ((n+1)x)}{2\sin (x)} k=0ncos(kx)=2sin(x)sin(x)+sin(nx)+sin((n+1)x)使用欧拉公式 e i x = cos ⁡ x + i sin ⁡ x e^{ix}=\cos x + i\sin x eix=cosx+isinx
正弦 ∑ k = 0 n sin ⁡ ( k x ) = 1 + cos ⁡ ( x ) − cos ⁡ ( n x ) − cos ⁡ ( ( n + 1 ) x ) 2 sin ⁡ x \sum_{k=0}^n \sin(kx)=\frac{1+\cos (x)-\cos (nx)-\cos ((n+1)x)}{2\sin x} k=0nsin(kx)=2sinx1+cos(x)cos(nx)cos((n+1)x)
- ∑ k = 1 n k q k = q ( 1 − q n ( 1 − q ) 2 − n q n 1 − q ) \sum_{k=1}^n kq^k=q(\frac{1-q^n}{(1-q)^2}-\frac{nq^n}{1-q}) k=1nkqk=q((1q)21qn1qnqn) q ≠ 1 q \ne 1 q=1
- ∑ k = 0 n 1 ( a + k d ) ( a + ( k + 1 ) d ) = 1 d ( 1 a − 1 a + ( n + 1 ) d ) \sum_{k=0}^n\frac{1}{(a+kd)(a+(k+1)d)}=\frac{1}{d}(\frac{1}{a}-\frac{1}{a+(n+1)d}) k=0n(a+kd)(a+(k+1)d)1=d1(a1a+(n+1)d1)

三角函数

形式正弦余弦正切
基本 s i n ( a ) = − s i n ( − a ) = s i n ( 2 n π + a ) = s i n ( π − a ) sin(a)=-sin(-a)\\=sin(2n\pi + a)=sin(\pi - a) sin(a)=sin(a)=sin(2+a)=sin(πa) c o s ( a ) = c o s ( − a ) = c o s ( 2 n π + a ) = − c o s ( π − a ) cos(a)=cos(-a)\\=cos(2n\pi + a)=-cos(\pi - a) cos(a)=cos(a)=cos(2+a)=cos(πa) t a n ( a ) = − t a n ( − a ) = s i n ( n π + a ) = 1 t a n ( π 2 − a ) tan(a)=-tan(-a)\\=sin(n\pi+a)=\frac{1}{tan(\frac{\pi}{2}-a)} tan(a)=tan(a)=sin(+a)=tan(2πa)1
和差角 s i n ( a ± b ) = s i n ( a ) c o s ( b ) ± c o s ( a ) s i n ( b ) sin(a\pm b)=sin(a)cos(b) \pm cos(a)sin(b) sin(a±b)=sin(a)cos(b)±cos(a)sin(b) c o s ( a ± b ) = c o s ( a ) c o s ( b ) ∓ c o s ( a ) c o s ( b ) cos(a\pm b)=cos(a)cos(b)\mp cos(a)cos(b) cos(a±b)=cos(a)cos(b)cos(a)cos(b) t a n ( a ± b ) = t a n ( a ) ± t a n ( b ) 1 ∓ t a n ( a ) t a n ( b ) tan(a\pm b)=\frac{tan(a)\pm tan(b)}{1 \mp tan(a)tan(b)} tan(a±b)=1tan(a)tan(b)tan(a)±tan(b)
和差化积 s i n ( a + b ) + s i n ( a − b ) = 2 s i n ( a ) c o s ( b ) s i n ( a + b ) − s i n ( a − b ) = 2 c o s ( a ) s i n ( b ) sin(a+b)+sin(a-b)=2sin (a)cos(b)\\sin(a+b)-sin(a-b)=2cos (a) sin (b) sin(a+b)+sin(ab)=2sin(a)cos(b)sin(a+b)sin(ab)=2cos(a)sin(b) c o s ( a + b ) + c o s ( a − b ) = 2 c o s ( a ) c o s ( b ) c o s ( a + b ) − c o s ( a − b ) = − 2 s i n ( a ) s i n ( b ) cos(a+b)+cos(a-b)=2cos(a)cos(b)\\cos(a+b)-cos(a-b)=-2sin(a)sin(b) cos(a+b)+cos(ab)=2cos(a)cos(b)cos(a+b)cos(ab)=2sin(a)sin(b) t a n ( a ) ± t a n ( b ) = s i n ( a ± b ) c o s ( a ) c o s ( b ) tan(a)\pm tan(b)=\frac{sin(a\pm b)}{cos(a)cos(b)} tan(a)±tan(b)=cos(a)cos(b)sin(a±b)
万能公式 s i n ( a ) = 2 t a n ( a / 2 ) 1 + t a n 2 ( a / 2 ) sin(a)=\frac{2tan(a/2)}{1+tan^2(a/2)} sin(a)=1+tan2(a/2)2tan(a/2) c o s ( a ) = 1 − t a n 2 ( a / 2 ) 1 + t a n 2 ( a / 2 ) cos(a)=\frac{1-tan^2(a/2)}{1+tan^2(a/2)} cos(a)=1+tan2(a/2)1tan2(a/2) t a n ( a ) = 2 t a n ( a / 2 ) 1 − t a n 2 ( a / 2 ) tan(a)=\frac{2tan (a/2)}{1-tan^2(a/2)} tan(a)=1tan2(a/2)2tan(a/2)
半角 s i n a 2 = ± 1 − c o s ( a ) 2 sin\frac{a}{2}=\pm \sqrt {\frac{1-cos(a)}{2}} sin2a=±21cos(a) c o s a 2 = ± c o s ( a ) + 1 2 cos\frac{a}{2}=\pm \sqrt {\frac{cos(a)+1}{2}} cos2a=±2cos(a)+1 t a n a 2 = s i n ( a ) 1 + c o s ( a ) = 1 − c o s ( a ) s i n ( a ) tan\frac{a}{2}= \frac {sin(a)} {1+cos(a)} = \frac {1-cos(a)}{sin(a)} tan2a=1+cos(a)sin(a)=sin(a)1cos(a)
二倍角 s i n ( 2 a ) = 2 c o s ( a ) s i n ( a ) sin(2a)=2cos(a)sin(a) sin(2a)=2cos(a)sin(a) c o s ( 2 a ) = 2 c o s 2 ( a ) − 1 cos(2a)= 2cos^2(a)-1 cos(2a)=2cos2(a)1 t a n ( 2 a ) = 2 t a n ( a ) 1 − t a n 2 ( a ) tan(2a)=\frac{2tan(a)}{1-tan^2(a)} tan(2a)=1tan2(a)2tan(a)
三倍角 s i n ( 3 a ) = ( 4 c o s 2 ( a ) − 1 ) s i n ( a ) sin(3a)=(4cos^2(a)-1)sin(a) sin(3a)=(4cos2(a)1)sin(a) c o s ( 3 a ) = 4 c o s 3 ( a ) − 3 c o s ( a ) cos(3a)=4cos^3(a)-3cos(a) cos(3a)=4cos3(a)3cos(a) t a n ( 3 a ) = 3 t a n ( a ) − t a n 2 ( a ) 1 − 3 t a n 2 ( a ) tan(3a)=\frac{3tan(a)-tan^2(a)}{1-3tan^2(a)} tan(3a)=13tan2(a)3tan(a)tan2(a)
四倍角 s i n ( 4 a ) = ( 8 c o s 3 ( a ) − 4 c o s ( a ) ) s i n ( a ) sin(4a)=(8cos^3(a)-4cos(a))sin(a) sin(4a)=(8cos3(a)4cos(a))sin(a) c o s ( 4 a ) = 8 c o s 4 ( a ) − 8 c o s 2 ( a ) + 1 cos(4a)=8cos^4(a)-8cos^2(a)+1 cos(4a)=8cos4(a)8cos2(a)+1 t a n ( 4 a ) = 4 t a n ( a ) − 4 t a n 3 ( a ) 1 − 6 t a n 2 ( a ) + t a n 4 ( a ) tan(4a)=\frac{4tan(a)-4tan^3(a)}{1-6tan^2(a)+tan^4(a)} tan(4a)=16tan2(a)+tan4(a)4tan(a)4tan3(a)

相关公式: s i n 2 ( a ) + c o s 2 ( a ) = 1 , s i n ( a ) = c o s ( π / 2 − a ) , t a n ( a ) = s i n ( a ) / c o s ( a ) sin^2(a)+cos^2(a)=1, sin(a)=cos(\pi/2-a), tan(a)=sin(a)/cos(a) sin2(a)+cos2(a)=1,sin(a)=cos(π/2a),tan(a)=sin(a)/cos(a)
辅助角公式: A sin ⁡ ( x ) + B cos ⁡ ( x ) = A 2 + B 2 s i n ( x + arctan ⁡ B A ) A\sin(x)+B\cos(x)=\sqrt{A^2+B^2}sin(x+\arctan\frac{B}{A}) Asin(x)+Bcos(x)=A2+B2 sin(x+arctanAB)

倍角公式

指数与对数

名字内容
指数 x a + b = x a x b ( x y ) a = x a y x^{a+b}=x^ax^b\\(xy)^a=x^ay xa+b=xaxb(xy)a=xay
对数 l o g b ( x a ) = a   l o g b ( x ) l o g a ( x y ) = l o g a ( x ) + l o g a ( y ) log_b(x^a)=a\ log_b(x)\\log_a(xy)=log_a(x)+log_a(y) logb(xa)=a logb(x)loga(xy)=loga(x)+loga(y)
对数换底 l o g b ( a ) = l o g c ( a ) l o g c ( b ) log_b(a)=\frac{log_c(a) }{log_c(b)} logb(a)=logc(b)logc(a)

不等式

名字内容备注
均值不等式 n ∑ i = 1 n a i − 1 ≤ ∏ i = 1 n a i n ≤ ∑ i = 1 n a i n ≤ ∑ i = 1 n a i 2 n \frac {n}{\sum_{i=1}^n a_i^{-1} } \le \sqrt[n]{\prod_{i=1}^n a_i} \le \frac {\sum_{i=1}^n a_i }{n} \le \sqrt{\frac {\sum_{i=1}^n a_i^2}{n}} i=1nai1nni=1nai ni=1naini=1nai2
排序不等式 ∑ i = 1 n a i b i > = ∑ i = 1 n a i c i > = ∑ i = 1 n a i b n + 1 − i \sum_{i=1}^n a_ib_i>=\sum_{i=1}^n a_ic_i>=\sum_{i=1}^n a_ib_{n+1-i} i=1naibi>=i=1naici>=i=1naibn+1i { a i } , { b i } \{a_i\},\{b_i\} {ai},{bi} 都是递增数列, { c i } \{c_i\} {ci} { b i } \{b_i\} {bi} 打乱顺序的数列
柯西不等式 ∑ i = 1 n a i 2 ∑ i = 1 n b i 2 > = ( ∑ i = 1 n a i b i ) 2 \sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2 >= (\sum_{i=1}^n a_ib_i)^2 i=1nai2i=1nbi2>=(i=1naibi)2
三角不等式 ∣ a ∣ − ∣ b ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ∑ i = 1 n ( a i + b i ) 2 ≤ ∑ i = 1 n a i 2 + ∑ i = 1 n b i 2 |a|-|b| \le |a \pm b | \le |a|+|b|\\\sqrt{\sum_{i=1}^n(a_i+b_i)^2}\le\sqrt{\sum_{i=1}^na_i^2}+\sqrt{\sum_{i=1}^n b_i^2} aba±ba+bi=1n(ai+bi)2 i=1nai2 +i=1nbi2

代数方程

方程
a x + b = 0 ax+b=0 ax+b=0 x = − b a x=-\frac{b}{a} x=ab
a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 a_1x+b_1y=c_1\\a_2x+b_2y=c_2 a1x+b1y=c1a2x+b2y=c2 x = b 2 c 1 − b 1 c 2 a 1 b 2 − a 2 b 1   y = a 1 c 2 − a 2 c 1 a 1 b 2 − a 2 b 1 x=\frac{b_2c_1-b_1c_2}{a_1b_2-a_2b_1}\\\ \\y=\frac{a_1c_2-a_2c_1}{a_1b_2-a_2b_1} x=a1b2a2b1b2c1b1c2 y=a1b2a2b1a1c2a2c1
a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 a_1x+b_1y+c_1z=d_1\\a_2x+b_2y+c_2z=d_2\\a_3x+b_3y+c_3z=d_3 a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3 x = d 1 b 2 c 3 + d 2 b 3 c 1 + d 3 b 1 c 2 − d 1 b 3 c 2 − d 2 b 1 c 3 − d 3 b 2 c 1 a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 − a 1 b 3 c 2 − a 2 b 1 c 3 − a 3 b 2 c 1   y = a 1 d 2 c 3 + a 2 d 3 c 1 + a 3 d 1 c 2 − a 1 d 3 c 2 − a 2 d 1 c 3 − a 3 d 2 c 1 a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 − a 1 b 3 c 2 − a 2 b 1 c 3 − a 3 b 2 c 1   z = a 1 b 2 d 3 + a 2 b 3 d 1 + a 3 b 1 d 2 − a 1 b 3 d 2 − a 2 b 1 d 3 − a 3 b 2 d 1 a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 − a 1 b 3 c 2 − a 2 b 1 c 3 − a 3 b 2 c 1 x=\frac{d_1b_2c_3+d_2b_3c_1+d_3b_1c_2-d_1b_3c_2-d_2b_1c_3-d_3b_2c_1}{a_1b_2c_3+a_2b_3c_1+a_3b_1c_2-a_1b_3c_2-a_2b_1c_3-a_3b_2c_1}\\\ \\y=\frac{a_1d_2c_3+a_2d_3c_1+a_3d_1c_2-a_1d_3c_2-a_2d_1c_3-a_3d_2c_1}{a_1b_2c_3+a_2b_3c_1+a_3b_1c_2-a_1b_3c_2-a_2b_1c_3-a_3b_2c_1}\\\ \\z=\frac{a_1b_2d_3+a_2b_3d_1+a_3b_1d_2-a_1b_3d_2-a_2b_1d_3-a_3b_2d_1}{a_1b_2c_3+a_2b_3c_1+a_3b_1c_2-a_1b_3c_2-a_2b_1c_3-a_3b_2c_1} x=a1b2c3+a2b3c1+a3b1c2a1b3c2a2b1c3a3b2c1d1b2c3+d2b3c1+d3b1c2d1b3c2d2b1c3d3b2c1 y=a1b2c3+a2b3c1+a3b1c2a1b3c2a2b1c3a3b2c1a1d2c3+a2d3c1+a3d1c2a1d3c2a2d1c3a3d2c1 z=a1b2c3+a2b3c1+a3b1c2a1b3c2a2b1c3a3b2c1a1b2d3+a2b3d1+a3b1d2a1b3d2a2b1d3a3b2d1
a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0 x = − b ± b 2 − 4 a c 2 a x=\frac{ -b\pm\sqrt{b^2-4ac}}{2a} x=2ab±b24ac
x 3 + p x + q = 0 x^3+px+q=0 x3+px+q=0 x = − q 2 + q 2 4 − p 3 27 3 + − q 2 − q 2 4 − p 3 27 3 x= \sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^2}{4}-\frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^2}{4}-\frac{p^3}{27}}} x=32q+4q227p3 +32q4q227p3

向量

名字内容
模长 ∣ x → ∣ = ∑ i = 1 n x i 2 |\overrightarrow{x}|=\sqrt{\sum_{i=1}^nx_i^2} x =i=1nxi2
点乘/内积 x → ⋅ y → = ∑ i = 1 n x i y i \overrightarrow{x} \cdot \overrightarrow{y}=\sum_{i=1}^nx_iy_i x y =i=1nxiyi
内角 θ = arccos ⁡ x → ⋅ y → ∣ x → ∣ ∣ y → ∣ \theta=\arccos \frac{\overrightarrow{x} \cdot \overrightarrow{y}}{|\overrightarrow{x}||\overrightarrow{y}|} θ=arccosx ∣∣y x y
叉乘/外积 x → × y → = ( x 2 y 3 − x 3 y 2 , x 3 y 1 − x 1 y 3 , x 1 y 2 − x 2 y 3 ) \overrightarrow{x} \times \overrightarrow{y}=(x_2y_3-x_3y_2,x_3y_1-x_1y_3,x_1y_2-x_2y_3) x ×y =(x2y3x3y2,x3y1x1y3,x1y2x2y3)

几何学

面积

几何体面积公式备注
三角形 S = a b sin ⁡ C 2 S=\frac{ab\sin C}{2} S=2absinC相邻边长为 a , b a,b a,b,夹角为 C C C
平行四边形 S = a b sin ⁡ θ S=ab\sin\theta S=absinθ相邻边长为 a , b a,b a,b,其中一内角为 θ \theta θ
矩形 S = a b S=ab S=ab长宽为 a , b a,b a,b
菱形 S = d 1 d 2 2 S=\frac{d_1d_2}{2} S=2d1d2对角线长为 d 1 , d 2 d_1,d_2 d1,d2
梯形 S = ( a + b ) h 2 S=\frac{(a+b)h}{2} S=2(a+b)h上下底为 a , b a,b a,b,高为 h h h
圆内接四边形-婆罗摩笈多公式 S = ( p − a ) ( p − b ) ( p − c ) ( p − d ) S=\sqrt{(p-a)(p-b)(p-c)(p-d)} S=(pa)(pb)(pc)(pd) 四条边长为 a , b , c , d a,b,c,d a,b,c,d
任意四边形 S = ( p − a ) ( p − b ) ( p − c ) ( p − d ) − a b c d cos ⁡ 2 θ S=\sqrt{(p-a)(p-b)(p-c)(p-d)-abcd\cos^2\theta} S=(pa)(pb)(pc)(pd)abcdcos2θ 四条边长为 a , b , c , d a,b,c,d a,b,c,d,对角和的一半 θ \theta θ
圆/椭圆 S = π a b S=\pi ab S=πab半长/短轴长为 a , b a,b a,b
正多边形 S = a 2 4 n tan ⁡ ( π / n ) S=\frac{a^2}{4}\frac{n}{\tan(\pi/n)} S=4a2tan(π/n)n边长为 a a a,边数为 n n n

体积

几何体体积公式备注
长方体 V = a b c V=abc V=abc长宽高为 a , b , c a,b,c a,b,c
柱体 V = S h V=Sh V=Sh横截面积为 S S S, 高为 h h h
锥体 V = S h 3 V=\frac{Sh}{3} V=3Sh底面积为 S S S, 高为 h h h
V = 4 π 3 R 3 V=\frac{4\pi}{3}R^3 V=34πR3半径为 R R R
台体 V = S 1 + S 1 S 2 + S 2 3 h V=\frac{S_1+\sqrt{S_1S_2}+S_2}{3}h V=3S1+S1S2 +S2h上下底面积为 S 1 , S 2 S_1,S_2 S1,S2, 高为 h h h
正四面体 V = 2 12 a 3 V=\frac{\sqrt{2}}{12}a^3 V=122 a3边长为 a a a
正八面体 V = 2 3 a 3 V=\frac{\sqrt{2}}{3}a^3 V=32 a3边长为 a a a
正十二面体 V = 15 + 7 5 4 a 3 V=\frac{15+7\sqrt{5}}{4}a^3 V=415+75 a3边长为 a a a
正二十面体 V = 15 + 5 5 12 a 3 V=\frac{15+5\sqrt{5}}{12}a^3 V=1215+55 a3边长为 a a a

解析几何

直角坐标方程

名字内容备注
平面直线 x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 \frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1} x2x1xx1=y2y1yy1直线经过点 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2)
( x − O x ) 2 + ( y − O y ) 2 = R 2 (x-O_x)^2+(y-O_y)^2=R^2 (xOx)2+(yOy)2=R2圆心为 ( O x , O y ) (O_x ,O_y) (Ox,Oy), 半径为 R R R
抛物线 y 2 = 2 p x y^2=2px y2=2px焦点为 ( p / 2 , 0 ) ( p/2,0) (p/2,0)
椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1焦点为 ( ± a 2 − b 2 , 0 ) (\pm \sqrt{a^2-b^2},0) (±a2b2 ,0)
双曲线 x 2 a 2 − y 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2b2y2=1焦点为 ( ± a 2 + b 2 , 0 ) (\pm \sqrt{a^2+b^2},0) (±a2+b2 ,0)
空间直线 x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 = z − z 1 z 2 − z 1 \frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1} x2x1xx1=y2y1yy1=z2z1zz1直线经过点 ( x 1 , y 1 , z 1 ) , ( x 2 , y 2 , z 2 ) (x_1,y_1,z_1),(x_2,y_2,z_2) (x1,y1,z1),(x2,y2,z2)
( x − O x ) 2 + ( y − O y ) 2 + ( z − O z ) 2 = R 2 (x-O_x)^2+(y-O_y)^2+(z-O_z)^2=R^2 (xOx)2+(yOy)2+(zOz)2=R2圆心为 ( O x , O y , O z ) (O_x ,O_y,O_z) (Ox,Oy,Oz), 半径为 R R R
空间平面 ( P 1 P 2 → × P 1 P 3 → ) ⋅ ( x , y , z ) = ( P 1 P 2 → × P 1 P 3 → ) ⋅ P 1 (\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}) \cdot (x,y,z) = (\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}) \cdot P_1 (P1P2 ×P1P3 )(x,y,z)=(P1P2 ×P1P3 )P1平面经过点 P 1 , P 2 , P 3 P_1,P_2,P_3 P1,P2,P3且三点不共线

( x p , y p ) (x_p,y_p) (xp,yp)到直线 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0距离为 ∣ A x p + B y p + C ∣ A 2 + B 2 \frac{|Ax_p+By_p+C|}{\sqrt{A^2+B^2}} A2+B2 Axp+Byp+C
( x p , y p , z p ) (x_p,y_p,z_p) (xp,yp,zp)到平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0距离为 ∣ A x p + B y p + C z p + D ∣ A 2 + B 2 + C 2 \frac{|Ax_p+By_p+Cz_p+D|}{\sqrt{A^2+B^2+C^2}} A2+B2+C2 Axp+Byp+Czp+D

极坐标方程

名字内容备注
直线 ρ = d cos ⁡ ( θ − θ 0 ) \rho = \frac{d}{\cos(\theta-\theta_0)} ρ=cos(θθ0)d极点到直线的最近点为 ( d , θ 0 ) (d,\theta_0) (d,θ0)
ρ 2 + ρ o 2 − 2 ρ ρ o cos ⁡ ( θ − θ o ) = R 2 \rho^2+\rho_o^2-2\rho\rho_o\cos(\theta-\theta_o)=R^2 ρ2+ρo22ρρocos(θθo)=R2圆心为 ( ρ o , θ o ) (\rho_o ,\theta_o) (ρo,θo), 半径为 R R R,此公式实质为余弦定理
圆锥曲线 ρ = e p 1 − e cos ⁡ ( θ − θ 0 ) \rho=\frac{ep}{1-e\cos(\theta-\theta_0)} ρ=1ecos(θθ0)ep极点为焦点,离心率为 e e e, 焦准距为 p p p

平面三角

名字内容备注
勾股定理 c 2 = a 2 + b 2 c^2=a^2+b^2 c2=a2+b2
余弦定理 c 2 = a 2 + b 2 − 2 a b   c o s   C c^2=a^2+b^2-2ab \ cos\ C c2=a2+b22ab cos C
正弦定理 a s i n ( A ) = b s i n ( B ) = c s i n ( C ) = 2 R \frac{a}{sin(A)}=\frac{b}{sin(B)}=\frac{c}{sin(C)}=2R sin(A)a=sin(B)b=sin(C)c=2R R R R为外接圆半径
海伦公式 S = p ( p − a ) ( p − b ) ( p − c ) S=\sqrt{p(p-a)(p-b)(p-c)} S=p(pa)(pb)(pc) p = a + b + c 2 p=\frac{a+b+c}{2} p=2a+b+c
内切圆半径 r = 2 S a + b + c = ( p − a ) ( p − b ) ( p − c ) p r=\frac{2S}{a+b+c}=\sqrt{\frac{(p-a)(p-b)(p-c)}{p}} r=a+b+c2S=p(pa)(pb)(pc) p = a + b + c 2 p=\frac{a+b+c}{2} p=2a+b+c

tan ⁡ ( A ) + tan ⁡ ( B ) + tan ⁡ ( C ) = tan ⁡ ( A ) tan ⁡ ( B ) tan ⁡ ( C ) \tan(A)+\tan(B)+\tan(C)=\tan(A)\tan(B)\tan(C) tan(A)+tan(B)+tan(C)=tan(A)tan(B)tan(C)

球面三角

名称内容
边的余弦公式 c o s ( c ) = c o s ( a ) c o s ( b ) + s i n ( a ) s i n ( b ) c o s ( C ) cos(c)=cos(a)cos(b)+sin(a)sin(b) cos(C) cos(c)=cos(a)cos(b)+sin(a)sin(b)cos(C)
角的余弦公式 c o s ( C ) = − c o s ( A ) c o s ( B ) + s i n ( A ) s i n ( B ) c o s ( c ) cos(C)= -cos(A)cos(B)+sin(A)sin(B)cos(c) cos(C)=cos(A)cos(B)+sin(A)sin(B)cos(c)
正弦公式 s i n ( a ) s i n ( A ) = s i n ( b ) s i n ( B ) = s i n ( c ) s i n ( C ) \frac{sin(a)}{sin(A)}= \frac{sin(b)}{sin(B)}= \frac{sin(c)}{sin(C)} sin(A)sin(a)=sin(B)sin(b)=sin(C)sin(c)
面积公式 S = ( A + B + C − π ) R 2 S=(A+B+C-π)R^2 S=(A+B+Cπ)R2

如果 C C C是直角, 那有
c o s ( c ) = c o s ( a ) c o s ( b ) = c o t ( A ) / t a n ( B ) cos(c) = cos(a) cos(b) = cot(A)/tan(B) cos(c)=cos(a)cos(b)=cot(A)/tan(B)
s i n ( a ) = s i n ( c ) s i n ( A ) = t a n ( b ) / t a n ( B ) sin(a) = sin(c) sin(A) = tan(b)/tan(B) sin(a)=sin(c)sin(A)=tan(b)/tan(B)
s i n ( b ) = s i n ( c ) s i n ( B ) = t a n ( a ) / t a n ( A ) sin(b) = sin(c) sin(B)= tan(a)/tan(A) sin(b)=sin(c)sin(B)=tan(a)/tan(A)
c o s ( A ) = c o s ( a ) s i n ( B ) = t a n ( b ) / t a n ( c ) cos(A) =cos(a) sin(B)=tan(b)/tan(c) cos(A)=cos(a)sin(B)=tan(b)/tan(c)
c o s ( B ) = c o s ( b ) s i n ( A ) = t a n ( a ) / t a n ( c ) cos(B) = cos(b) sin(A) = tan(a )/tan(c) cos(B)=cos(b)sin(A)=tan(a)/tan(c)


统计学

组合数学

名称内容
排列数 A n k = n ! ( n − k ) ! A_n^k=\frac{n!}{(n-k)!} Ank=(nk)!n!
组合数 C n k = n ! k ! ( n − k ) ! C_n^k=\frac{n!}{k!(n-k)!} Cnk=k!(nk)!n!
Catalan数 C n = 1 n + 1 C 2 n n C_n=\frac{1}{n+1}C_{2n}^n Cn=n+11C2nn
错排数 D n = n ! ∑ k = 2 n ( − 1 ) k k ! = ⌊ n ! e + 1 2 ⌋ D_n=n!\sum_{k=2}^n\frac{(-1)^k}{k!}=\lfloor\frac{n!}{e}+\frac{1}{2}\rfloor Dn=n!k=2nk!(1)k=en!+21

组合数性质:
C n k = C n n − k , C n k − 1 + C n k = C n + 1 k , ∑ k = 0 n C n k = 2 n , ∑ i = k n C i k = C n + 1 k + 1 , ∑ i = 0 k C n i C m k − i = C m + n k C_n^k=C_n^{n-k}, \quad C_n^{k-1}+C_n^k=C_{n+1}^k, \quad \sum_{k=0}^{n}C_n^k=2^n, \quad \sum_{i=k}^nC_i^k=C_{n+1}^{k+1}, \quad \sum_{i=0}^kC_n^iC_m^{k-i}=C_{m+n}^k Cnk=Cnnk,Cnk1+Cnk=Cn+1k,k=0nCnk=2n,i=knCik=Cn+1k+1,i=0kCniCmki=Cm+nk

统计

名称内容
平均数/期望 E ( X ) = 1 n ∑ i = 1 n X i E(X)=\frac{1}{n}\sum_{i=1}^nX_i E(X)=n1i=1nXi
方差 D ( X ) = 1 n ∑ i = 1 n ( X i − E ( X ) ) 2 = 1 n ∑ i = 1 n X i 2 − 1 n 2 ( ∑ i = 1 n X i ) 2 D(X)=\frac{1}{n}\sum_{i=1}^n(X_i-E(X))^2\\=\frac{1}{n}\sum_{i=1}^nX_i^2-\frac{1}{n^2}(\sum_{i=1}^nX_i)^2 D(X)=n1i=1n(XiE(X))2=n1i=1nXi2n21(i=1nXi)2
回归直线 y = b x + a y=bx+a y=bx+a b = ∑ i = 1 n x i y i − n x ‾   y ‾ ∑ i = 1 n x i 2 − n x ‾ 2   a = y ‾ − b x ‾ b=\frac{\sum_{i=1}^nx_iy_i-n\overline{x}\ \overline{y}}{\sum_{i=1}^nx_i^2-n\overline{x}^2}\\\ \\a=\overline{y}-b\overline{x} b=i=1nxi2nx2i=1nxiyinx y a=ybx

概率

名称内容
独立事件 P ( A ∩ B ) = P ( A ) P ( B ) P(A\cap B)=P(A)P(B) P(AB)=P(A)P(B)
互斥事件 P ( A ∩ B ) = 0 P(A\cap B)=0 P(AB)=0
条件概率 P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac{P(A\cap B)}{P(B)} P(AB)=P(B)P(AB)
全概率公式 P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^n{P(A| B_i)}{P(B_i)} P(A)=i=1nP(ABi)P(Bi)
并集 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A ∩ B ) − P ( A ∩ C ) − P ( B ∩ C ) + P ( A ∩ B ∩ C ) P(A\cup B)=P(A)+P(B)-P(A \cap B)\\P(A\cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C) +P(A \cap B \cap C) P(AB)=P(A)+P(B)P(AB)P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)
贝叶斯公式 P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) =\frac{P(B|A) P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)
二项分布-n次独立实验成功k次 P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_n^kp^k(1-p)^{n-k} P(X=k)=Cnkpk(1p)nk
正态分布/高斯分布 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi} \sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2

总结

以上是本文全部内容:除了课本上出现的公式,本人也列举了考试常用的一些公式。如果有缺漏或错误的,可以在评论区指出。更高级的公式将在后续更新,敬请期待。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值