怎么查论文的AI率是多少?这10款AI 检测工具别错过

我是娜姐 @迪娜学姐 ,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。

图片

这篇先介绍10款AI 检测工具,改天继续写AI检测的原理及如何降低AI率。欢迎持续关注。

先声明,直接用AI生成论文不可取,ChatGPT最好的用法是帮我们搭论文框架,润色。好工具用得好才能威力无穷。

1 GPTZero,推荐指数5/5颗星

图片


推荐理由:我用了发表在NEJM上的一篇论文来测试对比。先用标题让ChatGPT生成一篇300字左右的摘要(挺像那么回事的)。然后分别丢进GPTZero,结果显示ChatGPT生成的是“written by AI”,而原作者的是“written by a human”。还挺准的。它还可以选择上传整个文件。免费,免注册就能用。


2 CheckforAI,推荐指数4/5颗星

图片


推荐理由:它的检测结果更详细。可以按照句子,给出不同程度的相似度打分。有点像crosscheck的相似度检测。需注册,免费。也可以上传文档。

3 Sapling,推荐指数3/5颗星

图片


推荐理由:据说是有前斯坦福、谷歌研究人员开发的。免费可检测2000字,注册可达8000字。但是,这个查出来AI写作比例只有22.7%,哈哈,AI骗过了AI. 但是,原作者的文字Fake是0.


4 StudyCorgi,推荐指数4/5颗星

图片

图片


推荐理由:可给出详细的具体到单词的AI生成可能性报告。为了方便学生写essay的,主要是为了让学生使用他们的人工改写业务。一次可输入4500单词,结果比较准确。


5 Winston AI,推荐指数2/5颗星

图片


推荐理由:可以给打分,还有详细报告,哪些句子是AI生成的。需要邮箱注册,有2000单词的免费额度,用完就要按月付费。

6 Crossplag AI Content Detector,推荐指数4/5颗星

图片


推荐理由:免费,且无需注册。粘贴内容,点击“Check”,速度很快,直接给出了一个83%“该文本主要由AI生成”的结论。准确。

7 WriteCream AI Content Detector,推荐指数2/5颗星

图片


推荐理由:无需注册,免费使用。可以给出具体的AI内容百分比。但是,貌似结果不准确,打出了34%分。

8 Copyleaks AI Content Detector,推荐指数2/5颗星

图片


推荐理由:会给高度可疑的句子标红。没有评分。免费,无需注册直接使用。但是结果不太准确。

9 OpenAI's AI Text Classifier,推荐指数3/5颗星

图片


推荐理由:openai公司自己出的AI 生成内容检测工具。哈哈,这是既当裁判又当运动员。对于ChatGPT生成的内容,它的检测结果是“unclear if it is AI-generated",原作者的摘要则是”very unlikely AI-generated“。emm。。。需要openai的账号登录,免费的。

10 Content at Scale's AI Detector,推荐指数3/5颗星

图片


推荐理由:左侧是可疑度百分比,右侧是具体内容的分析。免费,免注册。生成很快。

 

### 可用于免费AIGC相关指标或数据的资源 对于希望获取有关AIGC(生成式AI内容)的相关指标或数据分析的研究者和从业者来说,存在一些公开可用的数据源和服务平台能够提供帮助。然而,在特定提及的参考资料中并未直接涉及此类网站的信息[^1]。 尽管如此,仍有一些知名的开源项目以及社区驱动型平台提供了部分功能供用户探索: - **Hugging Face**:作为一个广泛使用的机器学习模型托管站点,这里不仅有丰富的预训练模型库,还包含了大量关于不同类型的自然语言处理任务的表现评估报告。虽然不是专门针对AIGC性能度量而设,但对于理解当前技术水平非常有价值。 - **Papers With Code**:该网站专注于收集整理计算机科学领域内最新的研究成果及其对应的实验代码实现。通过浏览其中与AIGC相关的论文列表,可以获得许多前沿研究团队所采用的关键评价标准和技术细节说明。 为了更精确地找到满足需求的服务,建议关注以下几个方面: - 平台是否定期更新其数据库中的统计信息; - 是否支持自定义询接口以便于提取所需的具体参数; - 社区活跃程度及官方支持力度如何影响长期可依赖性; 值得注意的是,由于AIGC是一个快速发展的新兴领域,因此高质量的专业级监测工具往往伴随着一定的成本门槛。如果目标是深入研究或商业应用,则可能需要考虑订阅专业的市场调研服务或是加入某些限定访问权限的技术交流圈子。 ```python import requests def fetch_aigc_metrics(platform_url): response = requests.get(platform_url) if response.status_code == 200: metrics_data = response.json() return metrics_data['metrics'] else: raise Exception('Failed to retrieve data') platform_urls = [ 'https://api.huggingface.co/metrics', 'https://paperswithcode.com/api/v1/' ] for url in platform_urls: try: print(fetch_aigc_metrics(url)) except Exception as e: print(e) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值