PCA-主成分分析

#define DIMENTIONS	7
#define SAMPLE_NUM	5
float Coordinates[DIMENTIONS*SAMPLE_NUM]={
	101.5,100.4,97.0,98.7,100.8,114.2,104.2
	,100.8,93.5,95.9,100.7,106.7,104.3,106.4
	,100.8,97.4,98.2,98.2,99.5,103.6,102.4
	,99.4,96.0,98.2,97.8,99.1,98.3,104.3
	,101.8,97.7,99.0,98.1,98.4,102.0,103.7
};
int main()
{
	Mat pcaSet(SAMPLE_NUM, DIMENTIONS, CV_32FC1);
	for (int i=0; i<(SAMPLE_NUM); ++i)
	{
		for (int j=0; j<DIMENTIONS; ++j)
		{
			pcaSet.at<float>(i, j) = Coordinates[i*DIMENTIONS + j];
		}
	}
	//PCA pca(pcaSet, Mat(), CV_PCA_DATA_AS_ROW);///
	PCA *pca = new PCA(pcaSet, Mat(), CV_PCA_DATA_AS_ROW);///
	cout << "eigenvalues:" <<endl << pca->eigenvalues <<endl<<endl;
	cout << "eigenvectors" <<endl << pca->eigenvectors << endl;
	delete pca;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值