Rasa官方教程翻译3 命令行接口

备忘录

创建新工程

训练模型

交互学习

使用你的助手

开启服务

开启Action服务

故事可视化

在测试数据集上评估模型

拆分训练测试数据

Markdown和JSON数据转换

开启Rasa X

 

备忘录

命令行接口提供了易于记忆的常用任务的命令

命令

作用

rasa init

使用训练数据样本,执行动作和配置文件创建新的工程

rasa train

使用NLU 数据和故事训练模型,将经过训练的模型保存在 ./models目录下

rasa interactive

开启交互学习会话,并通过聊天收集新的训练数据

rasa shell

加载训练好模型并通过命令行与智能助手交互

rasa run

使用训练好的模型启动Rasa服务。有关详细信息,请参阅 Running the Server文档。

rasa run actions

使用Rasa SDK启动action 服务

rasa visualize

故事可视化

rasa test

使用测试NLU 数据和故事测试训练好的Rasa模型

rasa data split nlu

根据指定的百分比拆分NLU数据

rasa data convert nlu

在不同的格式之间转换NLU训练数据

rasa x

在本地启动rasa x

rasa -h

显示所有可用命令

创建新工程

该命令可以使用例程的训练数据创建一个完整工程

rasa init

这个命令将创建以下文件:

.

├── __init__.py

├── actions.py

├── config.yml

├── credentials.yml

├── data

│   ├── nlu.md

│   └── stories.md

├── domain.yml

├── endpoints.yml

└── models

    └── <timestamp>.tar.gz

 

rasa init 命令会询问你是否要使用这些数据训练初始模型。如果你回答是 no ,models目录将是空的。

通过该工程的设置,是很容易记住常用命令的。训练模型的命令是 rasa train ,通过命令行与模型交互的命令是rasa shell ,测试模型的命令是rasa test 。

训练模型

主要命令是:

rasa train

这个命令的训练是结合了Rasa NLU和Rasa Core模型的Rasa模型。如果你只想训练NLU或Core模型,可以使用rasa train nlu或rasa train core命令。但是,如果训练数据和配置没有改变,Rasa会自动跳过Core或NLU的训练。

rasa train 命令将把训练好的模型存储在被--out参数指定的目录中。模型的默认名称是

<timestamp>.tar.gz 。如果你想自定义模型名称,可以使用--fixed-model-name指定名称。

在训练过程中可以使用下面的参数:

usage: rasa train [-h] [-v] [-vv] [--quiet] [--data DATA [DATA ...]]

                  [-c CONFIG] [-d DOMAIN] [--out OUT]

                  [--augmentation AUGMENTATION] [--debug-plots]

                  [--dump-stories] [--fixed-model-name FIXED_MODEL_NAME]

                  [--force]

                  {core,nlu} ...

 

positional arguments:

  {core,nlu}

    core                Trains a Rasa Core model using your stories.

    nlu                 Trains a Rasa NLU model using your NLU data.

 

optional arguments:

  -h, --help            show this help message and exit

  --data DATA [DATA ...]

                        Paths to the Core and NLU data files. (default:

                        ['data'])

  -c CONFIG, --config CONFIG

                        The policy and NLU pipeline configuration of your bot.

                        (default: config.yml)

  -d DOMAIN, --domain DOMAIN

                        Domain specification (yml file). (default: domain.yml)

  --out OUT             Directory where your models should be stored.

                        (default: models)

  --augmentation AUGMENTATION

                        How much data augmentation to use during training.

                        (default: 50)

  --debug-plots         If enabled, will create plots showing checkpoints and

                        their connections between story blocks in a file

                        called `story_blocks_connections.html`. (default:

                        False)

  --dump-stories        If enabled, save flattened stories to a file.

                        (default: False)

  --fixed-model-name FIXED_MODEL_NAME

                        If set, the name of the model file/directory will be

                        set to the given name. (default: None)

  --force               Force a model training even if the data has not

                        changed. (default: False)

 

Python Logging Options:

  -v, --verbose         Be verbose. Sets logging level to INFO. (default:

                        None)

  -vv, --debug          Print lots of debugging statements. Sets logging level

                        to DEBUG. (default: None)

  --quiet               Be quiet! Sets logging level to WARNING. (default:

                        None)

 

 

注意

在使用rasa train 训练模型时请确保Core和NLU的训练数据都存在 如果Core和NLU的训练数据仅存在其中一种,命令会根据提供的训练文件自动回退到 rasa train nlu rasa train core命令

交互学习

使用下面命令开启与你的助手的交互式学习会话:

 

rasa interactive

 

如果你使用参数--model提供训练模型,交互学习使用你提供的模型启动。否则,在没有使用参数 --data指定目录的情况下,rasa interactive命令将使用data/目录下的数据训练新的Rasa模。训练完初始模型后,会启动交互学习。如果训练数据和配置没有改变将跳过模型训练。

下面列出了 rasa interactive命令的参数:

usage: rasa interactive [-h] [-v] [-vv] [--quiet] [--e2e] [-m MODEL]

                        [--data DATA [DATA ...]] [--skip-visualization]

                        [--endpoints ENDPOINTS] [-c CONFIG] [-d DOMAIN]

                        [--out OUT] [--augmentation AUGMENTATION]

                        [--debug-plots] [--dump-stories] [--force]

                        {core} ... [model-as-positional-argument]

 

positional arguments:

  {core}

    core                Starts an interactive learning session model to create

                        new training data for a Rasa Core model by chatting.

                        Uses the 'RegexInterpreter', i.e. `/<intent>` input

                        format.

  model-as-positional-argument

                        Path to a trained Rasa model. If a directory is

                        specified, it will use the latest model in this

                        directory. (default: None)

 

optional arguments:

  -h, --help            show this help message and exit

  --e2e                 Save story files in e2e format. In this format user

                        messages will be included in the stories. (default:

                        False)

  -m MODEL, --model MODEL

                        Path to a trained Rasa model. If a directory is

                        specified, it will use the latest model in this

                        directory. (default: None)

  --data DATA [DATA ...]

                        Paths to the Core and NLU data files. (default:

                        ['data'])

  --skip-visualization  Disable plotting the visualization during interactive

                        learning. (default: False)

  --endpoints ENDPOINTS

                        Configuration file for the model server and the

                        connectors as a yml file. (default: None)

 

Python Logging Options:

  -v, --verbose         Be verbose. Sets logging level to INFO. (default:

                        None)

  -vv, --debug          Print lots of debugging statements. Sets logging level

                        to DEBUG. (default: None)

  --quiet               Be quiet! Sets logging level to WARNING. (default:

                        None)

 

Train Arguments:

  -c CONFIG, --config CONFIG

                        The policy and NLU pipeline configuration of your bot.

                        (default: config.yml)

  -d DOMAIN, --domain DOMAIN

                        Domain specification (yml file). (default: domain.yml)

  --out OUT             Directory where your models should be stored.

                        (default: models)

  --augmentation AUGMENTATION

                        How much data augmentation to use during training.

                        (default: 50)

  --debug-plots         If enabled, will create plots showing checkpoints and

                        their connections between story blocks in a file

                        called `story_blocks_connections.html`. (default:

                        False)

  --dump-stories        If enabled, save flattened stories to a file.

                        (default: False)

  --force               Force a model training even if the data has not

                        changed. (default: False)

与助手进行交互

使用下面命令,在命令行上启动与智能助手的聊天会话:

rasa shell

 

可以使用参数--model指定用户交互的模型。如果在启动会话时你仅指定NLU模型,你可以从命令行输入的文本中获取意图和实体。如果模型包含了Core模型,你不但可以和机器人交互也可以预测机器人下一步的动作。如果模型是Core和NLU的组合模型,但是你想查看你的模型从文本中提取的意图和实体,你可以使用rasa shell nlu 命令。

可以使用下面命令提高调试日志级别:

rasa shell --debug

下面列出了rasa shell命令的所有参数设置:

usage: rasa shell [-h] [-v] [-vv] [--quiet] [-m MODEL] [--log-file LOG_FILE]

                  [--endpoints ENDPOINTS] [-p PORT] [-t AUTH_TOKEN]

                  [--cors [CORS [CORS ...]]] [--enable-api]

                  [--remote-storage REMOTE_STORAGE]

                  [--ssl-certificate SSL_CERTIFICATE]

                  [--ssl-keyfile SSL_KEYFILE] [--ssl-password SSL_PASSWORD]

                  [--credentials CREDENTIALS] [--connector CONNECTOR]

                  [--jwt-secret JWT_SECRET] [--jwt-method JWT_METHOD]

                  {nlu} ... [model-as-positional-argument]

 

positional arguments:

  {nlu}

    nlu                 Interprets messages on the command line using your NLU

                        model.

  model-as-positional-argument

                        Path to a trained Rasa model. If a directory is

                        specified, it will use the latest model in this

                        directory. (default: None)

 

optional arguments:

  -h, --help            show this help message and exit

  -m MODEL, --model MODEL

                        Path to a trained Rasa model. If a directory is

                        specified, it will use the latest model in this

                        directory. (default: models)

  --log-file LOG_FILE   Store logs in specified file. (default: None)

  --endpoints ENDPOINTS

                        Configuration file for the model server and the

                        connectors as a yml file. (default: None)

 

Python Logging Options:

  -v, --verbose         Be verbose. Sets logging level to INFO. (default:

                        None)

  -vv, --debug          Print lots of debugging statements. Sets logging level

                        to DEBUG. (default: None)

  --quiet               Be quiet! Sets logging level to WARNING. (default:

                        None)

 

Server Settings:

  -p PORT, --port PORT  Port to run the server at. (default: 5005)

  -t AUTH_TOKEN, --auth-token AUTH_TOKEN

                        Enable token based authentication. Requests need to

                        provide the token to be accepted. (default: None)

  --cors [CORS [CORS ...]]

                        Enable CORS for the passed origin. Use * to whitelist

                        all origins. (default: None)

  --enable-api          Start the web server API in addition to the input

                        channel. (default: False)

  --remote-storage REMOTE_STORAGE

                        Set the remote location where your Rasa model is

                        stored, e.g. on AWS. (default: None)

  --ssl-certificate SSL_CERTIFICATE

                        Set the SSL Certificate to create a TLS secured

                        server. (default: None)

  --ssl-keyfile SSL_KEYFILE

                        Set the SSL Keyfile to create a TLS secured server.

                        (default: None)

  --ssl-password SSL_PASSWORD

                        If your ssl-keyfile is protected by a password, you

                        can specify it using this paramer. (default: None)

 

Channels:

  --credentials CREDENTIALS

                        Authentication credentials for the connector as a yml

                        file. (default: None)

  --connector CONNECTOR

                        Service to connect to. (default: None)

 

JWT Authentication:

  --jwt-secret JWT_SECRET

                        Public key for asymmetric JWT methods or shared

                        secretfor symmetric methods. Please also make sure to

                        use --jwt-method to select the method of the

                        signature, otherwise this argument will be ignored.

                        (default: None)

  --jwt-method JWT_METHOD

                        Method used for the signature of the JWT

                        authentication payload. (default: HS256)

开启服务

启动运行Rasa 模型的服务器,可以使用下面命令:

rasa run

下面参数可用于Rasa服务配置:

usage: rasa run [-h] [-v] [-vv] [--quiet] [-m MODEL] [--log-file LOG_FILE]

                [--endpoints ENDPOINTS] [-p PORT] [-t AUTH_TOKEN]

                [--cors [CORS [CORS ...]]] [--enable-api]

                [--remote-storage REMOTE_STORAGE]

                [--ssl-certificate SSL_CERTIFICATE]

                [--ssl-keyfile SSL_KEYFILE] [--ssl-password SSL_PASSWORD]

                [--credentials CREDENTIALS] [--connector CONNECTOR]

                [--jwt-secret JWT_SECRET] [--jwt-method JWT_METHOD]

                {actions} ... [model-as-positional-argument]

 

positional arguments:

  {actions}

    actions             Runs the action server.

  model-as-positional-argument

                        Path to a trained Rasa model. If a directory is

                        specified, it will use the latest model in this

                        directory. (default: None)

 

optional arguments:

  -h, --help            show this help message and exit

  -m MODEL, --model MODEL

                        Path to a trained Rasa model. If a directory is

                        specified, it will use the latest model in this

                        directory. (default: models)

  --log-file LOG_FILE   Store logs in specified file. (default: None)

  --endpoints ENDPOINTS

                        Configuration file for the model server and the

                        connectors as a yml file. (default: None)

 

Python Logging Options:

  -v, --verbose         Be verbose. Sets logging level to INFO. (default:

                        None)

  -vv, --debug          Print lots of debugging statements. Sets logging level

                        to DEBUG. (default: None)

  --quiet               Be quiet! Sets logging level to WARNING. (default:

                        None)

 

Server Settings:

  -p PORT, --port PORT  Port to run the server at. (default: 5005)

  -t AUTH_TOKEN, --auth-token AUTH_TOKEN

                        Enable token based authentication. Requests need to

                        provide the token to be accepted. (default: None)

  --cors [CORS [CORS ...]]

                        Enable CORS for the passed origin. Use * to whitelist

                        all origins. (default: None)

  --enable-api          Start the web server API in addition to the input

                        channel. (default: False)

  --remote-storage REMOTE_STORAGE

                        Set the remote location where your Rasa model is

                        stored, e.g. on AWS. (default: None)

  --ssl-certificate SSL_CERTIFICATE

                        Set the SSL Certificate to create a TLS secured

                        server. (default: None)

  --ssl-keyfile SSL_KEYFILE

                        Set the SSL Keyfile to create a TLS secured server.

                        (default: None)

  --ssl-password SSL_PASSWORD

                        If your ssl-keyfile is protected by a password, you

                        can specify it using this paramer. (default: None)

 

Channels:

  --credentials CREDENTIALS

                        Authentication credentials for the connector as a yml

                        file. (default: None)

  --connector CONNECTOR

                        Service to connect to. (default: None)

 

JWT Authentication:

  --jwt-secret JWT_SECRET

                        Public key for asymmetric JWT methods or shared

                        secretfor symmetric methods. Please also make sure to

                        use --jwt-method to select the method of the

                        signature, otherwise this argument will be ignored.

                        (default: None)

  --jwt-method JWT_METHOD

                        Method used for the signature of the JWT

                        authentication payload. (default: HS256)

想了解更多其他参数信息,参阅 Running the Server。查看Rasa的HTTP API 文档了解详细的节点文档。

开启动作服务

启动执行动作的服务器,使用下面命令:

rasa run actions

以下参数可用于调整服务器设置:

usage: rasa run actions [-h] [-v] [-vv] [--quiet] [-p PORT]

                        [--cors [CORS [CORS ...]]] [--actions ACTIONS]

 

optional arguments:

  -h, --help            show this help message and exit

  -p PORT, --port PORT  port to run the server at (default: 5055)

  --cors [CORS [CORS ...]]

                        enable CORS for the passed origin. Use * to whitelist

                        all origins (default: None)

  --actions ACTIONS     name of action package to be loaded (default: None)

 

Python Logging Options:

  -v, --verbose         Be verbose. Sets logging level to INFO. (default:

                        None)

  -vv, --debug          Print lots of debugging statements. Sets logging level

                        to DEBUG. (default: None)

  --quiet               Be quiet! Sets logging level to WARNING. (default:

                        None)

故事可视化

在浏览器中用图表显示你的故事,使用下面命令:

rasa visualize

通常,data目录下的训练故事是可视化的。如果你的故事在其他目录,可以使用--stories参数指定。

其他参数:

usage: rasa visualize [-h] [-v] [-vv] [--quiet] [-d DOMAIN] [-s STORIES]

                      [-c CONFIG] [--out OUT] [--max-history MAX_HISTORY]

                      [-u NLU]

 

optional arguments:

  -h, --help            show this help message and exit

  -d DOMAIN, --domain DOMAIN

                        Domain specification (yml file). (default: domain.yml)

  -s STORIES, --stories STORIES

                        File or folder containing your training stories.

                        (default: data)

  -c CONFIG, --config CONFIG

                        The policy and NLU pipeline configuration of your bot.

                        (default: config.yml)

  --out OUT             Filename of the output path, e.g. 'graph.html'.

                        (default: graph.html)

  --max-history MAX_HISTORY

                        Max history to consider when merging paths in the

                        output graph. (default: 2)

  -u NLU, --nlu NLU     File or folder containing your NLU data, used to

                        insert example messages into the graph. (default:

                        None)

 

Python Logging Options:

  -v, --verbose         Be verbose. Sets logging level to INFO. (default:

                        None)

  -vv, --debug          Print lots of debugging statements. Sets logging level

                        to DEBUG. (default: None)

  --quiet               Be quiet! Sets logging level to WARNING. (default:

                        None)

在测试数据集上评估模型

使用下面命令在测试数据集上评估模型:

rasa test

 

使用参数 --model 来指定要测试的模型。在 Evaluating an NLU Model 和 Evaluating a Core Model查看更详细的信息。

下面是rasa test 命令可以使用的参数:

usage: rasa test [-h] [-v] [-vv] [--quiet] [-m MODEL] [-s STORIES]

                 [--max-stories MAX_STORIES] [--e2e] [--endpoints ENDPOINTS]

                 [--fail-on-prediction-errors] [--url URL]

                 [--evaluate-model-directory] [-u NLU] [--out OUT]

                 [--successes] [--no-errors] [--histogram HISTOGRAM]

                 [--confmat CONFMAT] [-c CONFIG [CONFIG ...]]

                 [--cross-validation] [-f FOLDS] [-r RUNS]

                 [-p PERCENTAGES [PERCENTAGES ...]]

                 {core,nlu} ...

 

positional arguments:

  {core,nlu}

    core                Tests Rasa Core models using your test stories.

    nlu                 Tests Rasa NLU models using your test NLU data.

 

optional arguments:

  -h, --help            show this help message and exit

  -m MODEL, --model MODEL

                        Path to a trained Rasa model. If a directory is

                        specified, it will use the latest model in this

                        directory. (default: models)

 

Python Logging Options:

  -v, --verbose         Be verbose. Sets logging level to INFO. (default:

                        None)

  -vv, --debug          Print lots of debugging statements. Sets logging level

                        to DEBUG. (default: None)

  --quiet               Be quiet! Sets logging level to WARNING. (default:

                        None)

 

Core Test Arguments:

  -s STORIES, --stories STORIES

                        File or folder containing your test stories. (default:

                        data)

  --max-stories MAX_STORIES

                        Maximum number of stories to test on. (default: None)

  --e2e, --end-to-end   Run an end-to-end evaluation for combined action and

                        intent prediction. Requires a story file in end-to-end

                        format. (default: False)

  --endpoints ENDPOINTS

                        Configuration file for the connectors as a yml file.

                        (default: None)

  --fail-on-prediction-errors

                        If a prediction error is encountered, an exception is

                        thrown. This can be used to validate stories during

                        tests, e.g. on travis. (default: False)

  --url URL             If supplied, downloads a story file from a URL and

                        trains on it. Fetches the data by sending a GET

                        request to the supplied URL. (default: None)

  --evaluate-model-directory

                        Should be set to evaluate models trained via 'rasa

                        train core --config <config-1> <config-2>'. All models

                        in the provided directory are evaluated and compared

                        against each other. (default: False)

 

NLU Test Arguments:

  -u NLU, --nlu NLU     File or folder containing your NLU data. (default:

                        data)

  --out OUT             Output path for any files created during the

                        evaluation. (default: results)

  --successes           If set successful predictions (intent and entities)

                        will be written to a file. (default: False)

  --no-errors           If set incorrect predictions (intent and entities)

                        will NOT be written to a file. (default: False)

  --histogram HISTOGRAM

                        Output path for the confidence histogram. (default:

                        hist.png)

  --confmat CONFMAT     Output path for the confusion matrix plot. (default:

                        confmat.png)

  -c CONFIG [CONFIG ...], --config CONFIG [CONFIG ...]

                        Model configuration file. If a single file is passed

                        and cross validation mode is chosen, cross-validation

                        is performed, if multiple configs or a folder of

                        configs are passed, models will be trained and

                        compared directly. (default: None)

拆分训练测试数据

通过下面命令拆分NLU数据:

rasa data split nlu

使用下面的参数你可以指定训练数据,权值和输出路径:

usage: rasa data split nlu [-h] [-v] [-vv] [--quiet] [-u NLU]

                           [--training-fraction TRAINING_FRACTION] [--out OUT]

 

optional arguments:

  -h, --help            show this help message and exit

  -u NLU, --nlu NLU     File or folder containing your NLU data. (default:

                        data)

  --training-fraction TRAINING_FRACTION

                        Percentage of the data which should be in the training

                        data. (default: 0.8)

  --out OUT             Directory where the split files should be stored.

                        (default: train_test_split)

 

Python Logging Options:

  -v, --verbose         Be verbose. Sets logging level to INFO. (default:

                        None)

  -vv, --debug          Print lots of debugging statements. Sets logging level

                        to DEBUG. (default: None)

  --quiet               Be quiet! Sets logging level to WARNING. (default:

                        None)

该命令将尽量保持训练和测试数据中意图比例不变。

Markdown和JSON数据转换

下面命令可以把LUIS格式、WIT格式、Dialogflow格式、JSON格式或Markdown格式的NLU数据转化为JSON或Markdown格式:

rasa data convert nlu

 

使用下面的参数可以指定输入文件,输出文件和输出格式:

usage: rasa data convert nlu [-h] [-v] [-vv] [--quiet] --data DATA --out OUT

                             [-l LANGUAGE] -f {json,md}

 

optional arguments:

  -h, --help            show this help message and exit

  --data DATA           Path to the file or directory containing Rasa NLU

                        data. (default: None)

  --out OUT             File where to save training data in Rasa format.

                        (default: None)

  -l LANGUAGE, --language LANGUAGE

                        Language of data. (default: en)

  -f {json,md}, --format {json,md}

                        Output format the training data should be converted

                        into. (default: None)

 

Python Logging Options:

  -v, --verbose         Be verbose. Sets logging level to INFO. (default:

                        None)

  -vv, --debug          Print lots of debugging statements. Sets logging level

                        to DEBUG. (default: None)

  --quiet               Be quiet! Sets logging level to WARNING. (default:

                        None)

开启Rasa X

Rasa X是一个可以帮你构建、改进和部署由Rasa框架支持的AI助手的工具。你可在 here页面查看更多相关信息。

你可以使用下面命令在本地启动Rasa X:

rasa x

为了能够成功运行Rasa X,你需要先安装Rasa X(安装指导说明在这里here)和创建Rasa工程。

注意

Rasa X的默认端口是5002. 可以通过参数 --rasa-x-port 指定自定义端口。

下面是rasa x命令可用参数:

usage: rasa x [-h] [-v] [-vv] [--quiet] [-m MODEL] [--data DATA] [--no-prompt]

              [--production] [--rasa-x-port RASA_X_PORT]

              [--config-endpoint CONFIG_ENDPOINT] [--log-file LOG_FILE]

              [--endpoints ENDPOINTS] [-p PORT] [-t AUTH_TOKEN]

              [--cors [CORS [CORS ...]]] [--enable-api]

              [--remote-storage REMOTE_STORAGE]

              [--ssl-certificate SSL_CERTIFICATE] [--ssl-keyfile SSL_KEYFILE]

              [--ssl-password SSL_PASSWORD] [--credentials CREDENTIALS]

              [--connector CONNECTOR] [--jwt-secret JWT_SECRET]

              [--jwt-method JWT_METHOD]

 

optional arguments:

  -h, --help            show this help message and exit

  -m MODEL, --model MODEL

                        Path to a trained Rasa model. If a directory is

                        specified, it will use the latest model in this

                        directory. (default: models)

  --data DATA           Path to the file or directory containing stories and

                        Rasa NLU data. (default: data)

  --no-prompt           Automatic yes or default options to prompts and

                        oppressed warnings. (default: False)

  --production          Run Rasa X in a production environment. (default:

                        False)

  --rasa-x-port RASA_X_PORT

                        Port to run the Rasa X server at. (default: 5002)

  --config-endpoint CONFIG_ENDPOINT

                        Rasa X endpoint URL from which to pull the runtime

                        config. This URL typically contains the Rasa X token

                        for authentication. Example:

                        https://example.com/api/config?token=my_rasa_x_token

                        (default: None)

  --log-file LOG_FILE   Store logs in specified file. (default: None)

  --endpoints ENDPOINTS

                        Configuration file for the model server and the

                        connectors as a yml file. (default: None)

 

Python Logging Options:

  -v, --verbose         Be verbose. Sets logging level to INFO. (default:

                        None)

  -vv, --debug          Print lots of debugging statements. Sets logging level

                        to DEBUG. (default: None)

  --quiet               Be quiet! Sets logging level to WARNING. (default:

                        None)

 

Server Settings:

  -p PORT, --port PORT  Port to run the server at. (default: 5005)

  -t AUTH_TOKEN, --auth-token AUTH_TOKEN

                        Enable token based authentication. Requests need to

                        provide the token to be accepted. (default: None)

  --cors [CORS [CORS ...]]

                        Enable CORS for the passed origin. Use * to whitelist

                        all origins. (default: None)

  --enable-api          Start the web server API in addition to the input

                        channel. (default: False)

  --remote-storage REMOTE_STORAGE

                        Set the remote location where your Rasa model is

                        stored, e.g. on AWS. (default: None)

  --ssl-certificate SSL_CERTIFICATE

                        Set the SSL Certificate to create a TLS secured

                        server. (default: None)

  --ssl-keyfile SSL_KEYFILE

                        Set the SSL Keyfile to create a TLS secured server.

                        (default: None)

  --ssl-password SSL_PASSWORD

                        If your ssl-keyfile is protected by a password, you

                        can specify it using this paramer. (default: None)

 

Channels:

  --credentials CREDENTIALS

                        Authentication credentials for the connector as a yml

                        file. (default: None)

  --connector CONNECTOR

                        Service to connect to. (default: None)

 

JWT Authentication:

  --jwt-secret JWT_SECRET

                        Public key for asymmetric JWT methods or shared

                        secretfor symmetric methods. Please also make sure to

                        use --jwt-method to select the method of the

                        signature, otherwise this argument will be ignored.

                        (default: None)

  --jwt-method JWT_METHOD

                        Method used for the signature of the JWT

                        authentication payload. (default: HS256)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值