Dirichlet 前缀和

用倍数法进行贡献,时间复杂度为 O(nlog⁡n)O(nlogn),更具体地这个 log⁡log 是 ln⁡ln,这样的复杂度可以拿到 8080 分。所以我们考虑以唯一分解定理为基础,进行高维前缀和的处理,从而做到优化时间复杂度的目的。

首先将素数用 O(n)O(n) 的欧拉筛筛出来,然后处理每个素数的贡献。

由于唯一分解定理存在,因此存在数 a,ba,b 一定满足:

a=p1q1+p2q2+p3q3+⋯+pnqn=∑i=1npiqia=p1q1​​+p2q2​​+p3q3​​+⋯+pnqn​​=i=1∑n​piqi​​

b=p1q1+p2q2+p3q3+⋯+pmqm=∑i=1mpiqib=p1q1​​+p2q2​​+p3q3​​+⋯+pmqm​​=i=1∑m​piqi​​

因而,我们可以对于每一个素数开一维数组,处理高维前缀和——就如同二维、三维前缀和一般。当然由于我们不可能实际上做到开出如此多维度的数组,我们考虑将他们用一个 2×1072×107 的一维数组来存储。

实现起来长得就像是埃氏筛,对于每一个质数求取贡献。

#include<bits/stdc++.h>
#define N 20000005
using namespace std;
#define uint unsigned int
uint seed;
inline uint getnext(){
	seed^=seed<<13;
	seed^=seed>>17;
	seed^=seed<<5;
	return seed;
}uint pr[N],a[N],ans,cnt,n;
bool ip[N];
inline void gp(){
    vis[1]=1;
    for(int i=2;i<=N;i++){
        if(!ip[i])pr[++cnt]=i;
        for(int j=1;j<=cnt&&pr[j]*i<=N;j++){
            ip[i*pr[j]]=1;
            if(i%pr[j]==0)break;
        }
    }return;
}signed main(){
    scanf("%u%u",&n,&seed);gp();
    for(int i=1;i<=n;i++)a[i]=getnext();
    for(int i=1;i<=cnt;i++){
        for(int j=1;j*prime[i]<=n;j++)
	        a[pr[i]*j]+=a[j];
    for(int i=1;i<=n;i++)ans^=a[i];
    printf("%u\n",ans);
}

类似于埃氏筛的时间复杂度证明,这份代码的时间复杂度为 O(nlog⁡log⁡n)O(nloglogn)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值