添加暂退法的MLP

前言

一个好的预测模型能够在未知的数据上有好的表现,为了缩小训练数据和测试数据之间模型性能的差异,应该使模型尽可能的简单,简单性的另一种角度是平滑性,即函数不应该对输入的微小变化敏感。可以通过对输入加入噪声,增强输入-输出映射的平滑性。在前向传递过程中,是在训练过程中丢弃一些神经元。标准的暂退法包括在计算下一层前将当前层的一些节点置零。

定义暂退操作

暂退法函数将从均匀分布U[0,1]中抽取样本,样本数与这层的神经网络维度一致,保留对应样本大于p的节点,以实现按照概率p丢弃神经元。

def dropout_layer(X, dropout):
    assert 0 <= dropout <= 1
    if dropout == 1:
        return torch.zeros_like(X)
    if dropout == 0:
        return X
    # 给输入的每个元素分配保留的概率,大于dropout
    mask = (torch.rand(X.shape) > dropout).float()
    return mask * X / (1.0 - dropout)

定义模型参数和模型

采用两层网络的MLP使用Relu激活函数。
常用的暂退技巧:在靠近输入层的地方设置较低的暂退概率。

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
dropout1, dropout2 = 0.2, 0.5


# 在靠近输入的地方设置较低的暂退概率,暂退只在训练期间使用

# 定义模型
class Net(nn.Module):
    def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_train=True):
        super(Net, self).__init__()
        self.num_inputs = num_inputs
        self.training = is_train
        self.lin1 = nn.Linear(num_inputs, num_hiddens1)
        self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
        self.lin3 = nn.Linear(num_hiddens2, num_outputs)
        self.relu = nn.ReLU()

    def forward(self, X):
        H1 = self.relu(self.lin1(X.reshape(-1, self.num_inputs)))
        if self.training == True:
            H1 = dropout_layer(H1, dropout1)
        H2 = self.relu(self.lin2(H1))
        if self.training == True:
            H2 = dropout_layer(H2, dropout2)
        out = self.lin3(H2)
        return out

训练和测试

使用fashion-mnist数据集

net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)

num_epochs,lr,batch_size=10,0.5,256
loss=nn.CrossEntropyLoss(reduction='none')
train_iter,test_iter=data_iter.load_data_fashion_mnist(batch_size)
trainer=torch.optim.SGD(net.parameters(),lr=lr)

Train.train(net,train_iter,test_iter,loss,num_epochs,trainer)

模型训练方法参考本专栏之前的文章
在这里插入图片描述
在这里插入图片描述

简洁实现

net_concise=nn.Sequential(nn.Flatten(),
                          nn.Linear(784,256),
                          nn.ReLU(),
                          nn.Dropout(dropout1),
                          nn.Linear(256,256),
                          nn.ReLU(),
                          nn.Dropout(dropout2),
                          nn.Linear(256,10))
def init_weight(m):
    if type(m)==nn.Linear:
        nn.init.normal_(m.weight,std=0.01)

net_concise.apply(init_weight)

trainer_concise=torch.optim.SGD(net_concise.parameters(),lr=lr)

Train.train(net_concise,train_iter,test_iter,loss,num_epochs,trainer_concise)
  • 9
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在PyTorch中将attention机制添加MLP中,可以按照以下步骤进行: 1. 导入必要的库: ``` import torch import torch.nn as nn ``` 2. 定义MLP模型的类,并添加一个self-attention层: ``` class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(MLP, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, output_dim) self.self_att = nn.MultiheadAttention(hidden_dim, num_heads=1) def forward(self, x): # MLP部分 x = torch.relu(self.fc1(x)) x = self.fc2(x) # self-attention部分 x = x.permute(1, 0, 2) # 调整x的维度 x, _ = self.self_att(x, x, x) # 进行self-attention x = x.permute(1, 0, 2) # 再次调整维度 return x ``` 在这个例子中,MLP模型有两个全连接层和一个self-attention层。我们在self-attention层中使用MultiheadAttention,并将hidden_dim作为query、key、value的维度,同时指定num_heads=1表示使用1个头。在forward函数中,我们首先通过MLP部分处理输入x,然后将输出x进行维度调整,并通过self-attention层进行处理,最后再次调整维度后输出。 3. 实例化模型并进行训练: ``` input_dim = 100 hidden_dim = 50 output_dim = 10 model = MLP(input_dim, hidden_dim, output_dim) criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 进行训练 for epoch in range(10): optimizer.zero_grad() output = model(torch.randn(32, input_dim)) loss = criterion(output, torch.randn(32, output_dim)) loss.backward() optimizer.step() ``` 在训练过程中,我们首先定义了损失函数和优化器,然后对模型进行多次训练。在每个epoch中,我们首先将优化器的梯度清零,然后通过模型对随机输入进行前向传播得到输出,并计算输出和随机目标之间的损失。最后,我们通过backward方法计算梯度,并通过optimizer.step()方法更新模型的参数。 ### 回答2: 将attention机制添加MLP中,可以提高模型对输入数据的关注程度,使得模型更加关注重要的特征,从而改善模型的性能。 要在MLP添加attention机制,需要进行以下步骤: 1. 引入注意力机制:在PyTorch中,可以使用nn.Module来定义一个注意力机制的模块。常用的注意力机制有多种,如点积注意力、加性注意力等。可以根据具体的需求选择适合的注意力机制。 2. 定义MLP模型:在PyTorch中,可以使用nn.Module来定义一个MLP模型。MLP模型由多个全连接层组成,可以根据实际任务的需求来设计模型的结构。 3. 在MLP添加注意力机制:可以在MLP模型的每一层之间添加注意力机制。具体而言,可以将每个全连接层的输出作为注意力机制的输入,通过注意力机制得到注意力权重,再将注意力权重与全连接层的输出进行加权求和,得到加入了注意力机制的MLP的输出。 4. 训练模型:在训练过程中,需要将输入数据和标签数据传入模型中,使用相应的损失函数来计算损失,并使用优化算法对模型参数进行更新。 5. 使用模型进行预测:在测试过程中,可以将输入数据传入模型中,得到模型的预测结果,用于进一步的分析和应用。 总结: 通过将注意力机制添加MLP中,可以提高模型对输入数据的关注程度,使得模型能够更好地捕捉重要的特征信息,从而改善模型的性能。通过在PyTorch中进行相关操作,可以较为方便地实现这一目标。对于具体的任务和数据集,可以根据需要选择合适的注意力机制,并在MLP模型中进行相应的设计和训练。 ### 回答3: 要将attention机制添加mlp中,首先需要了解attention机制的原理。Attention机制是一种机器学习技术,用于给予模型更高的关注度(attention)于影响模型输出的重要输入。 在使用PyTorch实现时,我们可以使用PyTorch的nn模块来构建MLP模型和Attention模块,并利用PyTorch提供的优化器训练模型。 首先,导入所需的库: ``` import torch import torch.nn as nn import torch.optim as optim ``` 然后,定义MLP模型和Attention模块。MLP模型可以由多个线性层(nn.Linear)和激活函数(如nn.ReLU)组成。Attention模块可以根据输入计算attention权重。 ```python class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(MLP, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x class Attention(nn.Module): def __init__(self, input_dim): super(Attention, self).__init__() self.fc = nn.Linear(input_dim, 1) def forward(self, x): attention_weights = torch.softmax(self.fc(x), dim=1) x = torch.mul(x, attention_weights) return x ``` 接下来,初始化你的MLP模型和Attention模块,并定义损失函数和优化器。 ```python mlp = MLP(input_dim, hidden_dim, output_dim) attention = Attention(input_dim) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(list(mlp.parameters()) + list(attention.parameters()), lr=learning_rate) ``` 然后,开始训练模型。首先将输入数据传入MLP模型,然后将MLP模型的输出传入Attention模块,最后再将Attention模块的输出传入损失函数和优化器中。 ```python for epoch in range(num_epochs): optimizer.zero_grad() output = mlp(input_data) attention_output = attention(output) loss = criterion(attention_output, target) loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 最后,可以使用该模型进行预测。 ```python mlp.eval() attention.eval() output = mlp(input_data) attention_output = attention(output) predicted = torch.argmax(attention_output, dim=1) ``` 通过以上步骤,我们成功地将attention机制添加到了MLP中。希望这个回答能对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值