cow relays满足结合律的证明

即证明\((A*A)*A=A*(A*A)\)

因为\(A*A=B\),所以即证明\(B*A=A*B\)

\(C_1=B*A\),那么有$$C_1[i][j]=min_{1≤k≤p}(B[i,k]+A[k,j])$$

\[=min_{1≤k≤p}(min_{1≤l≤p}(A[i][l]+A[l][k])+A[k,j]) \]
\[=min_{1≤k≤p}(min_{1≤l≤p}(A[i][l]+A[l][k]+A[k,j])) \]
\[=min_{1≤k≤p,1≤l≤p}(A[i][l]+A[l][k]+A[k,j]) \]

\(C_2=A*B\),同理有$$C_2[i][j]=min_{1≤k≤p,1≤l≤p}(A[i][k]+A[k][l]+A[l,j])$$

显然\(C_1=C_2\)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值