Carousel of Combinations

由圆排列的公式,不难有 C ( n , k ) = ( k n ) × k ! k C(n,k)=(_k^n)\times \frac{k!}{k} C(n,k)=(kn)×kk!

于是答案为 ∑ i = 1 n ∑ j = 1 i ( ( j i ) ⋅ ( j − 1 ) ! ) m o d   j \sum_{i=1}^{n}\sum_{j=1}^{i}((_j^i)\cdot (j-1)!)mod\space j i=1nj=1i((ji)(j1)!)mod j

显然交换求和次序,有 ∑ i = 1 n ∑ j = i n ( ( i j ) ⋅ ( i − 1 ) ! ) m o d   i \sum_{i=1}^{n}\sum_{j=i}^{n}((_i^j)\cdot (i-1)!)mod\space i i=1nj=in((ij)(i1)!)mod i

由威尔逊定理可将 i i i限定在质数和 4 4 4之中,再由卢卡斯定理(这个一定要手写写出来才会发现很容易化简,比赛的时候就觉得可以用程序去算就没有化简,从而导致根本没办法往下面做,所以以后遇到公式了一定要手写写出来)可化简为 ∑ i = 1 n ∑ j = i n ( ⌊ j i ⌋ ⋅ ( i − 1 ) ) m o d   i \sum_{i=1}^{n}\sum_{j=i}^{n}(\lfloor\frac{j}{i}\rfloor\cdot (i-1))mod\space i i=1nj=in(⌊ij(i1))mod i

补题的时候一直想的是每个 i i i对整体的贡献,但是题解告诉我们也可以考虑 i i i对特定局部的贡献,最后将所有局部汇总就好了

具体来说,这里反过去考虑 ∑ i = 1 n ∑ j = 1 i ( ( j i ) ⋅ ( j − 1 ) ! ) m o d   j \sum_{i=1}^{n}\sum_{j=1}^{i}((_j^i)\cdot (j-1)!)mod\space j i=1nj=1i((ji)(j1)!)mod j,设 d p [ i ] = ∑ j = 1 i ( ( j i ) ⋅ ( j − 1 ) ! ) m o d   j dp[i]=\sum_{j=1}^{i}((_j^i)\cdot (j-1)!)mod\space j dp[i]=j=1i((ji)(j1)!)mod j,再考虑 ∑ i = 1 n ∑ j = i n ( ⌊ j i ⌋ ⋅ ( i − 1 ) ) m o d   i \sum_{i=1}^{n}\sum_{j=i}^{n}(\lfloor\frac{j}{i}\rfloor\cdot (i-1))mod\space i i=1nj=in(⌊ij(i1))mod i,统计每个 i i i d p dp dp数组的贡献(枚举倍数利用差分),时间复杂度为 O ( n O(n O(n ln n ) n) n)

  • 9
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值