[ZJOI2008] 瞭望塔

从题目给的图片可以得到一个提示,我们将某一个斜坡(不妨假设斜率为正)变成一条直线,那么如果我们瞭望塔建在了这条斜坡的右边,则瞭望塔的顶端一定要在这条直线的上方,否则的话就看不到这个斜坡。进一步地,假设我们已经确定了瞭望塔的位置,那么:在其左边的斜率为负的斜坡都能被看到,斜率为正的斜坡能被看见当且仅当其延长的直线在瞭望塔顶端的下边;在其右边的斜率为正的斜坡都能被看到,斜率为负的斜坡能被看见当且仅当其延长的直线在瞭望塔顶端的下边

于是不难发现这是一个半平面交的问题,我们求出所有斜坡延长的直线的半平面交,那么答案候选点肯定子啊半平面交的边界上。进一步地可以知道,答案候选点一定在半平面交的拐点或者是过某个村庄山峰顶点作垂直于 x x x轴的直线与半平面交边界的交点(因为如果都不是,那么我们将点向左边移动或者向右边移动,答案不会变得更差甚至可能会更好)

于是就变成模板题了

但是说一下我们的板子的问题:为什么最后需要让队首再去更新一遍队列?实际上这一个问题在OI-wiki中有阐述,可以看一下。但是这道题目的半平面交的所有边界的斜率,是从 − π 2 -\frac{π}{2} 2π逐渐递增到 π 2 \frac{π}{2} 2π的,肯定不会出现OI-wiki所说的问题,于是就不用让队首再去更新一遍队列。如果更新了会发生什么问题?你会发现样例二(Acwing有两个样例)过不了,原因就在于on_right函数,我们是小于等于判断的,这样会导致样例二全部都弹出去,我们要么将小于等于改成小于,要么不让队首再去更新一遍队列。这个改动是由于图形的特殊性质导致的。但是有些时候角度就是会设计 [ − π , π ] [-π,π] [π,π]的所有角度怎么办?以OI-wiki的讨论为例,他画的那个图,我们加入一个外边界就好了,如下图:

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值