[Datamining][FinancialRiskControl] Task02:数据分析

赛题:零基础入门数据挖掘 - 零基础入门金融风控之贷款违约

目的:

  • 1.EDA价值主要在于熟悉了解整个数据集的基本情况(缺失值,异常值),对数据集进行验证是否可以进行接下来的机器学习或者深度学习建模.

  • 2.了解变量间的相互关系、变量与预测值之间的存在关系。

  • 3.为特征工程做准备

2.1 学习目标

  • 学习如何对数据集整体概况进行分析,包括数据集的基本情况(缺失值,异常值)
  • 学习了解变量间的相互关系、变量与预测值之间的存在关系
  • 完成相应学习打卡任务

2.2 内容介绍

  • 数据总体了解:
    • 读取数据集并了解数据集大小,原始特征维度;
    • 通过info熟悉数据类型;
    • 粗略查看数据集中各特征基本统计量;
  • 缺失值和唯一值:
    • 查看数据缺失值情况
    • 查看唯一值特征情况
  • 深入数据-查看数据类型
    • 类别型数据
    • 数值型数据
      • 离散数值型数据
      • 连续数值型数据
  • 数据间相关关系
    • 特征和特征之间关系
    • 特征和目标变量之间关系
  • 用pandas_profiling生成数据报告

读取文件的拓展知识

  • pandas读取数据时相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。
  • TSV与CSV的区别:
    • 从名称上即可知道,TSV是用制表符(Tab,'\t')作为字段值的分隔符;CSV是用半角逗号(',')作为字段值的分隔符;
    • Python对TSV文件的支持: Python的csv模块准确的讲应该叫做dsv模块,因为它实际上是支持范式的分隔符分隔值文件(DSV,delimiter-separated values)的。 delimiter参数值默认为半角逗号,即默认将被处理文件视为CSV。当delimiter='\t'时,被处理文件就是TSV。
  • 读取文件的部分(适用于文件特别大的场景)
    • 通过nrows参数,来设置读取文件的前多少行,nrows是一个大于等于0的整数。
    • 分块读取
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页