金融风控-task 2 数据分析

目的:

1.EDA价值主要在于熟悉了解整个数据集的基本情况(缺失值,异常值),对数据集进行验证是否可以进行接下来的机器学习或者深度学习建模.

2.了解变量间的相互关系、变量与预测值之间的存在关系。

3.为特征工程做准备

2.1 学习内容

数据总体了解:
读取数据集并了解数据集大小,原始特征维度;
通过info熟悉数据类型;
粗略查看数据集中各特征基本统计量;
缺失值和唯一值:
查看数据缺失值情况
查看唯一值特征情况
深入数据-查看数据类型
类别型数据
数值型数据
离散数值型数据
连续数值型数据
数据间相关关系
特征和特征之间关系
特征和目标变量之间关系
用pandas_profiling生成数据报告

代码示例

2.3.1 导入数据分析及可视化过程需要的库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import warnings
warnings.filterwarnings('ignore')

2.3.2 读取文件

data_train = pd.read_csv('./train.csv')
data_test_a = pd.read_csv('./testA.csv')
读取文件的拓展知识

在这里插入图片描述

#设置chunksize参数,来控制每次迭代数据的大小
chunker = pd.read_csv("./train.csv",chunksize=5)
for item in chunker:
    print(type(item))
    #<class 'pandas.core.frame.DataFrame'>
    print(len(item))
    #5

2.3.3 总体了解

查看数据集的样本个数和原始特征维度
data_test_a.shape

在这里插入图片描述

data_train.shape

在这里插入图片描述

data_train.columns

2.3.4 查看数据集中特征缺失值,唯一值等

print(f'There are {data_train.isnull().any().sum()} columns in train dataset with missing values.')

在这里插入图片描述

have_null_fea_dict = (data_train.isnull().sum()/len(data_train)).to_dict()
fea_null_moreThanHalf = {}
for key,value in have_null_fea_dict.items():
    if value > 0.5:
        fea_null_moreThanHalf[key] = value

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Tips: 比赛大杀器lgb模型可以自动处理缺失值,Task4模型会具体学习模型了解模型哦!
查看训练集测试集中特征属性只有一值的特征

one_value_fea = [col for col in data_train.columns if data_train[col].nunique() <= 1]
one_value_fea_test = [col for col in data_test_a.columns if data_test_a[col].nunique() <= 1]

在这里插入图片描述

print(f'There are {len(one_value_fea)} columns in train dataset with one unique value.')
print(f'There are {len(one_value_fea_test)} columns in test dataset with one unique value.')

There are 1 columns in train dataset with one unique value.
There are 1 columns in test dataset with one unique value.
在这里插入图片描述

2.3.5 查看特征的数值类型有哪些,对象类型有哪些

在这里插入图片描述
numerical_fea = list(data_train.select_dtypes(exclude=[‘object’]).columns)
category_fea = list(filter(lambda x: x not in numerical_fea,list(data_train.columns)))

数值型变量分析,数值型肯定是包括连续型变量和离散型变量的,找出来

划分数值型变量中的连续变量和离散型变量

#过滤数值型类别特征
def get_numerical_serial_fea(data,feas):
   numerical_serial_fea = []
   numerical_noserial_fea = []
   for fea in feas:
       temp = data[fea].nunique()
       if temp <= 10:
           numerical_noserial_fea.append(fea)
           continue
       numerical_serial_fea.append(fea)
   return numerical_serial_fea,numerical_noserial_fea
numerical_serial_fea,numerical_noserial_fea = get_numerical_serial_fea(data_train,numerical_fea)
#每个数字特征得分布可视化
f = pd.melt(data_train, value_vars=numerical_serial_fea)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
具体参考:https://github.com/datawhalechina/team-learning-data-mining/blob/master/FinancialRiskControl/Task2%20%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90.md

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页