题目:
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
如图,根据二叉搜索树的特征,比根结点小的数位于二叉搜索数左子树上,比根结点大的数位于二叉搜索树的右子树上。所以如果两个结点分别位于左右子树,则此根结点就是所求。如果两结点最大的值小于根结点值,递归左子树,如果两结点最小的值大于根结点值,递归右子树。算法如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root==null||p==null||q==null){
return null;
}
if(Math.max(p.val,q.val)<root.val){
root = root.left;
return lowestCommonAncestor(root,p,q);
}else if(Math.min(p.val,q.val)>root.val){
root = root.right;
return lowestCommonAncestor(root,p,q);
}
return root;
}
}