【PTA-数据结构】进阶实验1-3.1 两个有序序列的中位数 (25 分)--两个数组的比较输出,分治策略

本文详细介绍了三种求解两个有序序列中位数的算法:二分归并排序、循环顺序比较和分治策略递归实现。针对每种算法,提供了具体的思想、代码实现和复杂度分析。特别是分治策略的算法,可以在O(log_2^N)的时间复杂度内找到中位数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考学习:进阶实验1-3.1 两个有序序列的中位数 (25分)
本文为CSDN博主「5?li」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/wulila/article/details/108036788

题目

已知有两个等长的非降序序列S1, S2, 设计函数求S1与S2并集的中位数。有序序列A​0​​,A​1​​,⋯,A​N−1​​的中位数指A​(N−1)/2​​的值,即第⌊(N+1)/2⌋个数(A​0​​为第1个数)。
输入格式:

输入分三行。第一行给出序列的公共长度N(0<N≤100000),随后每行输入一个序列的信息,即N个非降序排列的整数。数字用空格间隔。

输出格式:

在一行中输出两个输入序列的并集序列的中位数。

算法0:合并到一个大数组,分治策略的二分归并排序 O ( 2 ∗ N + N l o g 2 N ) ) O(2*N+Nlog_2^N)) O(2N+Nlog2N))

没有实现,只是学习思想
输入:按照递增顺序排好序的数组 A [ p . . q ] A[p..q] A[p..q] A [ q + 1.. r ] A[q+1..r] A[q+1..r]
输出:按照递增顺序排好序的数组 A [ p . . r ] A[p..r] A[p..r]

void MergeSort(A,p,r)
{
    if(p<r)
        q=(p+r)/2
    MergeSort(A,p,q);
    MergeSort(A,q+1,r);
    Merge(A,p,q,r);
}

Merge()函数的具体实现

void Merge(int A[],int p,int q,int r)
{
    int x=q-p+1,y=r-q;
    int i,j,k;
    for(i=0;i<x;++i)//将A[p..q]复制到B[1..x]
        B[i]=A[i+p-1];
    for(j=0;j<y;++j)//将A[q+1..r]复制到C[1..y]
        C[j]=A[q+j];
    i=j=1;k=p;
    while(i<=x&&j<=y)
    {
        if(B[i]<=C[j])
        {
            A[k]=B[i];
            ++i;
        }
        else
        {
            A[k]=C[j];
            ++j;
        }
        ++k;
    }
    if(i>x)//B已是空数组
    {
        for(i=j;i<=y;++i)
            {A[k]=C[i];++k}
    }
    else//C已是空数组
    {
        for(j=i;j<=x;++j)
            {A[k]=B[j];++k}
    }
    
}

算法1:循环顺序数中位数 ( 2 ∗ n − 1 ) / 2 (2*n-1)/2 (2n1)/2个数,然后直接输出中位数

#include <iostream>
using namespace std;
class test
{
private:
    int n,i;
    int* a;
    int* b;
public:
    test(int nn)
    {
        n=nn;
        a=new int[n];
        b=new int[n];
        for(i=0;i<n;++i)
        {
            cin>>a[i];
        }
       for(i=0;i<n;++i)
        {
            cin>>b[i];
        }
    }
    void output()
    {
        int cnt=(2*n-1)/2;
        if(cnt>0)
        {
            int i,j;
            for(i=0,j=0; i<n,j<n;)//两个数组的比较输出
            {
                if(a[i]<b[j])
                {
                    i++;cnt--;
                    if (cnt==0)  break; 
                }
                else
                {
                    j++;cnt--;
                    if (cnt==0)  break; 
                }
            }
            if (a[i]<b[j]) cout<<a[i];
            else cout<<b[j];
        }
        else//特殊处理,输入n=1,直接比较输出
        {
            if(a[0]<b[0])
                cout<<a[0];
            else
                cout<<b[0];
        }
    }
};
int main()
{
    int N;
    cin>>N;
    test t(N);
    t.output();
    return 0;
}

算法2: O ( l o g 2 N ) O(log_2^N) O(log2N) 分治策略:找两个子序列的中位数,递归实现

设定两个序列的左右边界:
序列 S 1 、 S 2 , l 1 、 r 1 S1、S2,l1、r1 S1S2l1r1分别为序列 S 1 S1 S1的左右边界, l 2 、 r 2 l2、r2 l2r2分别为序列 S 2 S2 S2的左右边界。

  1. 分别求两个序列的中位数,特别的,对于偶序列,第二个序列 S 2 S2 S2的中位数为 S 2 [ ( l 2 + r 2 ) / 2 + 1 ] S2[(l2+r2)/2+1] S2[(l2+r2)/2+1],这样使子问题的数目也相等(使得序列 S 1 S1 S1左(右)边和 S 2 S2 S2右(左)边需要去除的数目个数相等)
  2. 比较两个中位数,如果相等,则为所求。
    否则:
  3. 对较大的中位数所在的序列,去掉其后的部分,对于较小的中位数序列,去掉比这个中位数小的部分。将剩下的等长序列,继续递归调用。
  4. 注意:递归基1:序列S1和S2均各只剩1个数字,比较两个数字的大小,输出小的那个数为中位数。
    递归基2:序列 S 1 S1 S1 S 2 S2 S2均各剩下2个数字,先比较 S 1 [ l 1 ] S1[l1] S1[l1] S 2 [ l 2 ] S2[l2] S2[l2]:若 S 1 [ l 1 ] < S 2 [ l 2 ] S1[l1]<S2[l2] S1[l1]<S2[l2],则中位数是 S 1 [ r 1 ] S1[r1] S1[r1] S 2 [ l 2 ] S2[l2] S2[l2]中的小者;若 S 1 [ l 1 ] > S 2 [ l 2 ] S1[l1]>S2[l2] S1[l1]>S2[l2],则中位数是 S 1 [ l 1 ] S1[l1] S1[l1] S 2 [ r 2 ] S2[r2] S2[r2]中的小者。

注意问题:return MidTerm(a,b,mid1,r1,l1,mid2);return 调用的函数中,数组不加[]
注意调用函数,是从0到n-1
另外不能使用类实现,在外部main()函数递归调用,不能使用类内私有变量。

#include <iostream>
using namespace std;

int MidTerm(int a[],int b[],int l1,int r1,int l2,int r2)
{
    if(l1==r1)//递归基1
    {
        if(a[l1]<b[l2])
            return a[l1];
        else return b[l2];
    }
    else if(l1+1==r1)//递归基2
    {
        if(a[l1]<b[l2])
        {
            if(a[r1]<b[l2]) return a[r1];
            else return b[l2];
        }
        else 
        {
            if(b[r2]<a[l1]) return b[r2];
            else return a[l1];
        }
    }
    else
    {
        int mid1=(l1+r1)/2;
        int mid2=(l2+r2+1)/2;
        if(a[mid1]==b[mid2])
        {
            return a[mid1];
        }
        else
        {
            if(a[mid1]<b[mid2])
                return MidTerm(a,b,mid1,r1,l2,mid2);//递归调用
            else
                return MidTerm(a,b,l1,mid1,mid2,r2);//递归调用
        }
    }
}
int main()
{
    int n,i;
    cin>>n;
    int* a;
    int* b;
    a=new int[n];
    b=new int[n];
    for(i=0;i<n;++i)
    {
        cin>>a[i];
    }
   for(i=0;i<n;++i)
    {
        cin>>b[i];
    }
    cout<<MidTerm(a,b,0,n-1,0,n-1);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值