进阶实验1-3.1 两个有序序列的中位数 (25分)
已知有两个等长的非降序序列S1, S2, 设计函数求S1与S2并集的中位数。有序序列A0,A1,…,AN-1的中位数指A(N−1)/2的值,即第⌊(N+1)/2⌋个数(A0为第1个数)。
输入格式:
输入分三行。第一行给出序列的公共长度N(0<N≤100000),随后每行输入一个序列的信息,即N个非降序排列的整数。数字用空格间隔。
输出格式:
在一行中输出两个输入序列的并集序列的中位数。
输入样例1:
5
1 3 5 7 9
2 3 4 5 6
输出样例1:
4
输入样例2:
6
-100 -10 1 1 1 1
-50 0 2 3 4 5
输出样例2:
1
算法1:O(N)的时间复杂度
比较两个序列当前的数字,经过(2N-1)/2个数后取到的数即为中位数。
C++实现:
#include<iostream>
using namespace std;
int main()
{
int N;
cin >> N;
int * s1 = new int[N];
int * s2 = new int[N];
int i = 0, j = 0;
for (i = 0; i < N; i++) //读入s1数据
cin >> s1[i];
for (i = 0; i < N; i++) //读入s2数据
cin >> s2[i];
int n = (2 * N - 1) / 2;
if (n > 0)
{
//取过(2N-1)/2个数后,取的数为中位数
for (i = 0, j = 0; i < N, j < N;)
{
if (s1[i] <= s2[j])
{
n--; i++;
if (n == 0) { break; }
}
else
{
n--; j++;
if (n == 0) { break; }
}
}
if (s1[i] <= s2[j]) cout << s1[i];
else cout << s2[j];
}
else { //N=1的特殊情况
i = j = 0;
if (s1[i] <= s2[j]) cout << s1[i];
else cout << s2[j];
}
return 0;
}
算法2:O(logN)的时间复杂度
借鉴二分法,递归。
序列S1、S2,l1、r1分别为序列S1的左右边界,l2、r2分别为序列S2的左右边界。
分别求出两个序列S1和S2的中位数。注意!如果是偶序列,第二个序列S2的中位数需定为S2[(l2+r2)/2+1],为了使得序列S1左(右)边和S2右(左)边需要去除的数目个数相等。
将两个中位数进行比较:
若相等,则可确定该数为所求中位数。
若不相等,则对两个中位数中较大数的序列去除比这个数大(即这个数后面)的部分,保留其他;对另一个较小数所在的序列去除比这个数小(即这个数前面)的部分,保留其他。
对剩下等长序列进行递归调用。
递归基1:序列S1和S2均各只剩1个数字,比较两个数字的大小,输出小的那个数为中位数。
递归基2:序列S1和S2均各剩下2个数字,先比较S1[l1]和S2[l2]:若S1[l1]<S2[l2],则中位数是S1[r1]和S2[l2]中的小者;若S1[l1]>S2[l2],则中位数是S1[l1]和S2[r2]中的小者。
想法参考了bensonrachel的博客:https://blog.csdn.net/bensonrachel/article/details/78157103
C++实现:
#include<iostream>
using namespace std;
int midterm(int s1[], int l1, int r1, int s2[], int l2, int r2) //求中位数
{
int ret; //中位数
if (l1 == r1) //递归基1
{
if (s1[l1] < s2[l2]) ret = s1[l1];
else ret = s2[l2];
}
else if (l1 + 1 == r1) //递归基2
{
if (s1[l1] < s2[l2])
{
if (s1[r1] < s2[l2]) ret = s1[r1];
else ret = s2[l2];
}
else
{
if (s2[r2] < s1[l1]) ret = s2[r2];
else ret = s1[l1];
}
}
else
{
int mid1, mid2, m1, m2; //mid1和mid2分别记录S1和S2中位数的值,m1和m2分别记录S1和S2中位数的下标
m1 = (l1 + r1) / 2;
mid1 = s1[m1];
m2 = (l2 + r2 + 1) / 2; //注意+1,否则最后一个测试点不通过
mid2 = s2[m2];
if (mid1 == mid2) { ret = mid1; } //两个序列中位数相等
//两个序列中位数不相等
else if (mid1 > mid2)
{
ret = midterm(s1, l1, m1, s2, m2, r2);
}
else
{
ret = midterm(s1, m1, r1, s2, l2, m2);
}
}
return ret;
}
int main()
{
int N;
cin >> N;
int * s1 = new int[N];
int * s2 = new int[N];
int i = 0, j = 0;
for (i = 0; i < N; i++) //读入s1数据
{
cin >> s1[i];
}
for (i = 0; i < N; i++) //读入s2数据
{
cin >> s2[i];
}
int ret = midterm(s1, 0, N - 1, s2, 0, N - 1);
cout << ret << endl;
return 0;
}