A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part.
Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b.
Input Specification
The input file will contain one or more test cases. Each test case consists of one line containing two squares separated by one space. A square is a string consisting of a letter (a-h) representing the column and a digit (1-8) representing the row on the chessboard.
Output Specification
For each test case, print one line saying "To get from xx to yy takes n knight moves.".
Sample Input
e2 e4 a1 b2 b2 c3 a1 h8 a1 h7 h8 a1 b1 c3 f6 f6
Sample Output
To get from e2 to e4 takes 2 knight moves. To get from a1 to b2 takes 4 knight moves. To get from b2 to c3 takes 2 knight moves. To get from a1 to h8 takes 6 knight moves. To get from a1 to h7 takes 5 knight moves. To get from h8 to a1 takes 6 knight moves. To get from b1 to c3 takes 1 knight moves. To get from f6 to f6 takes 0 knight moves.
是不是感觉特别熟悉呢??没错,这道题已经做了好几遍了,是简单的DFS.......,是搜索专题里的老题了,将当前走的步骤数存入遍历到的当前的那个点里,如果之前已经有值的话就进行比较
AC代码:
#include<stdio.h> #include<string.h> int direction[8][2] = {{-2, -1}, {-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}}; int Traverse(int (*maze)[10], int x1, int y1, int x2, int y2, int sum) { if(x1 == x2 && y1 == y2) return 1; for(int t=0; t<8; ++t) { int i = x1 + direction[t][0], j = y1 + direction[t][1]; if(0<=i && i<8 && j>=0 && j<8) { if(maze[i][j] == -1 || (maze[i][j] >= 0 && maze[i][j] > sum)) { maze[i][j] = sum; Traverse(maze, i, j, x2, y2, sum+1); } } } return 1; } int main() { int maze[10][10], x1, y1, x2, y2; char in1[4], in2[4]; while(scanf("%s%s", in1, in2) != EOF) { x1 = in1[0] - 'a'; y1 = in1[1] - '1'; x2 = in2[0] - 'a'; y2 = in2[1] - '1'; memset(maze, -1, sizeof(maze)); for(int t=0; t<8; ++t) { maze[x1][y1] = 0; int i = x1 + direction[t][0], j = y1 + direction[t][1]; if(0<=i && i<8 && j>=0 && j<8) { maze[i][j] = 1; Traverse(maze, i, j, x2, y2, 2); } } printf("To get from %s to %s takes %d knight moves.\n", in1, in2, maze[x2][y2]); } }