VAE demo

先看tflearn 官方的:

from __future__ import division, print_function, absolute_import

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
import tensorflow as tf

import tflearn

# Data loading and preprocessing
import tflearn.datasets.mnist as mnist
X, Y, testX, testY = mnist.load_data(one_hot=True)

# Params
original_dim = 784 # MNIST images are 28x28 pixels
hidden_dim = 256
latent_dim = 2

# Building the encoder
encoder = tflearn.input_data(shape=[None, 784], name='input_images')
encoder = tflearn.fully_connected(encoder, hidden_dim, activation='relu')
z_mean = tflearn.fully_connected(encoder, latent_dim)
z_std = tflearn.fully_connected(encoder, latent_dim)

# Sampler: Normal (gaussian) random distribution
eps = tf.random_normal(tf.shape(z_std), dtype=tf.float32, mean=0., stddev=1.0,
                       name='epsilon')
z = z_mean + tf.exp(z_std / 2) * eps

# Building the decoder (with scope to re-use these layers later)
decoder = tflearn.fully_connected(z, hidden_dim, activation='relu',
                                  scope='decoder_h')
decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid',
                                  scope='decoder_out')

# Define VAE Loss
def vae_loss(x_reconstructed, x_true):
    # Reconstruction loss
    encode_decode_loss = x_true * tf.log(1e-10 + x_reconstructed) \
                         + (1 - x_true) * tf.log(1e-10 + 1 - x_reconstructed)
    encode_decode_loss = -tf.reduce_sum(encode_decode_loss, 1)
    # KL Divergence loss
    kl_div_loss = 1 + z_std - tf.square(z_mean) - tf.exp(z_std)
    kl_div_loss = -0.5 * tf.reduce_sum(kl_div_loss, 1)
    return tf.reduce_mean(encode_decode_loss + kl_div_loss)

net = tflearn.regression(decoder, optimizer='rmsprop', learning_rate=0.001,
                         loss=vae_loss, metric=None, name='target_images')

# We will need 2 models, one for training that will learn the latent
# representation, and one that can take random normal noise as input and
# use the decoder part of the network to generate an image

# Train the VAE
training_model = tflearn.DNN(net, tensorboard_verbose=0)
training_model.fit({'input_images': X}, {'target_images': X}, n_epoch=100,
                   validation_set=(testX, testX), batch_size=256, run_id="vae")

# Build an image generator (re-using the decoding layers)
# Input data is a normal (gaussian) random distribution (with dim = latent_dim)
input_noise = tflearn.input_data(shape=[None, latent_dim], name='input_noise')
decoder = tflearn.fully_connected(input_noise, hidden_dim, activation='relu',
                                  scope='decoder_h', reuse=True)
decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid',
                                  scope='decoder_out', reuse=True)
generator_model = tflearn.DNN(decoder, session=training_model.session)

# Building a manifold of generated digits
n = 25 # Figure row size
figure = np.zeros((28 * n, 28 * n))
# Random normal distributions to feed network with
x_axis = norm.ppf(np.linspace(0., 1., n))
y_axis = norm.ppf(np.linspace(0., 1., n))

for i, x in enumerate(x_axis):
    for j, y in enumerate(y_axis):
        samples = np.array([[x, y]])
        x_reconstructed = generator_model.predict({'input_noise': samples})
        digit = np.array(x_reconstructed[0]).reshape(28, 28)
        figure[i * 28: (i + 1) * 28, j * 28: (j + 1) * 28] = digit

plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
plt.show()

再看:https://github.com/kiyomaro927/tflearn-vae/blob/master/source/test/one_dimension/vae.py

import tensorflow as tf
import tflearn

from dataset import Dataset, Datasets

import pickle
import sys


# loading data
try:
    h_and_w = pickle.load(open('h_and_w.pkl', 'rb'))
    trainX, trainY, testX, testY = h_and_w.load_data()
except:
    print("No dataset was found.")
    sys.exit(1)

# network parameters
input_dim = 1 # height data input
encoder_hidden_dim = 16
decoder_hidden_dim = 16
latent_dim = 2

# paths
TENSORBOARD_DIR='experiment/'
CHECKPOINT_PATH='out_models/'

# training parameters
n_epoch = 200
batch_size = 50


# encoder
def encode(input_x):
    encoder = tflearn.fully_connected(input_x, encoder_hidden_dim, activation='relu')
    mu_encoder = tflearn.fully_connected(encoder, latent_dim, activation='linear')
    logvar_encoder = tflearn.fully_connected(encoder, latent_dim, activation='linear')
    return mu_encoder, logvar_encoder

# decoder
def decode(z):
    decoder = tflearn.fully_connected(z, decoder_hidden_dim, activation='relu')
    x_hat = tflearn.fully_connected(decoder, input_dim, activation='linear')
    return x_hat

# sampler
def sample(mu, logvar):
    epsilon = tf.random_normal(tf.shape(logvar), dtype=tf.float32, name='epsilon')
    std_encoder = tf.exp(tf.mul(0.5, logvar))
    z = tf.add(mu, tf.mul(std_encoder, epsilon))
    return z

# loss function(regularization)
def calculate_regularization_loss(mu, logvar):
    kl_divergence = -0.5 * tf.reduce_sum(1 + logvar - tf.square(mu) - tf.exp(logvar), reduction_indices=1)
    return kl_divergence

# loss function(reconstruction)
def calculate_reconstruction_loss(x_hat, input_x):
    mse = tflearn.objectives.mean_square(x_hat, input_x)
    return mse

# trainer
def define_trainer(target, optimizer):
    trainop = tflearn.TrainOp(loss=target,
                              optimizer=optimizer,
                              batch_size=batch_size,
                              metric=None,
                              name='vae_trainer')

    trainer = tflearn.Trainer(train_ops=trainop,
                              tensorboard_dir=TENSORBOARD_DIR,
                              tensorboard_verbose=3,
                              checkpoint_path=CHECKPOINT_PATH,
                              max_checkpoints=1)
    return trainer


# flow of VAE training
def main():
    input_x = tflearn.input_data(shape=(None, input_dim), name='input_x')
    mu, logvar = encode(input_x)
    z = sample(mu, logvar)
    x_hat = decode(z)

    regularization_loss = calculate_regularization_loss(mu, logvar)
    reconstruction_loss = calculate_reconstruction_loss(x_hat, input_x)
    target = tf.reduce_mean(tf.add(regularization_loss, reconstruction_loss))

    optimizer = tflearn.optimizers.Adam()
    optimizer = optimizer.get_tensor()

    trainer = define_trainer(target, optimizer)

    trainer.fit(feed_dicts={input_x: trainX}, val_feed_dicts={input_x: testX},
                n_epoch=n_epoch,
                show_metric=False,
                snapshot_epoch=True,
                shuffle_all=True,
                run_id='VAE')

    return 0

if __name__ == '__main__':
sys.exit(main())

 keras的:https://gist.github.com/philipperemy/b8a7b7be344e447e7ee6625fe2fdd765

from __future__ import print_function

import os

import numpy as np
from keras.layers import RepeatVector
from keras.layers.core import Dropout
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from keras.models import load_model

np.random.seed(123)


def prepare_sequences(x_train, window_length, random_indices):
    full_sequence = x_train.flatten()
    windows = []
    outliers = []
    for window_start in range(0, len(full_sequence) - window_length + 1):
        window_end = window_start + window_length
        window_range = range(window_start, window_end)
        window = list(full_sequence[window_range])
        contain_outlier = len(set(window_range).intersection(set(random_indices))) > 0
        outliers.append(contain_outlier)
        windows.append(window)
    return np.expand_dims(np.array(windows), axis=2), outliers


def get_signal(size, outliers_size=0.01):
    sig = np.expand_dims(np.random.normal(loc=0, scale=1, size=(size, 1)), axis=1)
    if outliers_size < 1:  # percentage.
        outliers_size = int(size * outliers_size)
    random_indices = np.random.choice(range(size), size=outliers_size, replace=False)
    sig[random_indices] = np.random.randint(6, 9, 1)[0]
    return sig, random_indices


def tp_fn_fp_tn(total, expected, actual):
    tp = len(set(expected).intersection(set(actual)))
    fn = len(set(expected) - set(actual))
    fp = len(set(actual) - set(expected))
    tn = len((total - set(expected)).intersection(total - set(actual)))
    return tp, fn, fp, tn


def main():
    window_length = 10
    select_only_last_state = False
    model_file = 'model.h5'
    hidden_dim = 16

    # no outliers.
    signal_train, _ = get_signal(100000, outliers_size=0)
    x_train, _ = prepare_sequences(signal_train, window_length, [])

    # 1 percent are outliers.
    signal_test, random_indices = get_signal(100000, outliers_size=0.01)
    x_test, contain_outliers = prepare_sequences(signal_test, window_length, random_indices)
    outlier_indices = np.where(contain_outliers)[0]

    if os.path.isfile(model_file):
        m = load_model(model_file)
    else:
        m = Sequential()
        if select_only_last_state:
            m.add(LSTM(hidden_dim, input_shape=(window_length, 1), return_sequences=False))
            m.add(RepeatVector(window_length))
        else:
            m.add(LSTM(hidden_dim, input_shape=(window_length, 1), return_sequences=True))
        m.add(Dropout(p=0.1))
        m.add(LSTM(1, return_sequences=True, activation='linear'))
        m.compile(loss='mse', optimizer='adam')
        m.fit(x_train, x_train, batch_size=64, nb_epoch=5, validation_data=(x_test, x_test))
        m.save(model_file)

    pred_x_test = m.predict(x_test)
    mae_of_predictions = np.squeeze(np.max(np.square(pred_x_test - x_test), axis=1))
    mae_threshold = np.mean(mae_of_predictions) + np.std(mae_of_predictions)  # can use a running mean instead.
    actual = np.where(mae_of_predictions > mae_threshold)[0]

    tp, fn, fp, tn = tp_fn_fp_tn(set(range(len(pred_x_test))), outlier_indices, actual)
    precision = float(tp) / (tp + fp)
    hit_rate = float(tp) / (tp + fn)
    accuracy = float(tp + tn) / (tp + tn + fp + fn)

    print('precision = {}, hit_rate = {}, accuracy = {}'.format(precision, hit_rate, accuracy))


if __name__ == '__main__':
main()

 再看看keras官方的:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from keras.layers import Lambda, Input, Dense
from keras.models import Model
from keras.datasets import mnist
from keras.losses import mse, binary_crossentropy
from keras.utils import plot_model
from keras import backend as K

import numpy as np
import matplotlib.pyplot as plt
import argparse
import os


# reparameterization trick
# instead of sampling from Q(z|X), sample eps = N(0,I)
# z = z_mean + sqrt(var)*eps
def sampling(args):
    """Reparameterization trick by sampling fr an isotropic unit Gaussian.
    # Arguments:
        args (tensor): mean and log of variance of Q(z|X)
    # Returns:
        z (tensor): sampled latent vector
    """

    z_mean, z_log_var = args
    batch = K.shape(z_mean)[0]
    dim = K.int_shape(z_mean)[1]
    # by default, random_normal has mean=0 and std=1.0
    epsilon = K.random_normal(shape=(batch, dim))
    return z_mean + K.exp(0.5 * z_log_var) * epsilon


def plot_results(models,
                 data,
                 batch_size=128,
                 model_name="vae_mnist"):
    """Plots labels and MNIST digits as function of 2-dim latent vector
    # Arguments:
        models (tuple): encoder and decoder models
        data (tuple): test data and label
        batch_size (int): prediction batch size
        model_name (string): which model is using this function
    """

    encoder, decoder = models
    x_test, y_test = data
    os.makedirs(model_name, exist_ok=True)

    filename = os.path.join(model_name, "vae_mean.png")
    # display a 2D plot of the digit classes in the latent space
    z_mean, _, _ = encoder.predict(x_test,
                                   batch_size=batch_size)
    plt.figure(figsize=(12, 10))
    plt.scatter(z_mean[:, 0], z_mean[:, 1], c=y_test)
    plt.colorbar()
    plt.xlabel("z[0]")
    plt.ylabel("z[1]")
    plt.savefig(filename)
    plt.show()

    filename = os.path.join(model_name, "digits_over_latent.png")
    # display a 30x30 2D manifold of digits
    n = 30
    digit_size = 28
    figure = np.zeros((digit_size * n, digit_size * n))
    # linearly spaced coordinates corresponding to the 2D plot
    # of digit classes in the latent space
    grid_x = np.linspace(-4, 4, n)
    grid_y = np.linspace(-4, 4, n)[::-1]

    for i, yi in enumerate(grid_y):
        for j, xi in enumerate(grid_x):
            z_sample = np.array([[xi, yi]])
            x_decoded = decoder.predict(z_sample)
            digit = x_decoded[0].reshape(digit_size, digit_size)
            figure[i * digit_size: (i + 1) * digit_size,
                   j * digit_size: (j + 1) * digit_size] = digit

    plt.figure(figsize=(10, 10))
    start_range = digit_size // 2
    end_range = n * digit_size + start_range + 1
    pixel_range = np.arange(start_range, end_range, digit_size)
    sample_range_x = np.round(grid_x, 1)
    sample_range_y = np.round(grid_y, 1)
    plt.xticks(pixel_range, sample_range_x)
    plt.yticks(pixel_range, sample_range_y)
    plt.xlabel("z[0]")
    plt.ylabel("z[1]")
    plt.imshow(figure, cmap='Greys_r')
    plt.savefig(filename)
    plt.show()


# MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

image_size = x_train.shape[1]
original_dim = image_size * image_size
x_train = np.reshape(x_train, [-1, original_dim])
x_test = np.reshape(x_test, [-1, original_dim])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
input_shape = (original_dim, )
intermediate_dim = 512
batch_size = 128
latent_dim = 2
epochs = 50

# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = Dense(intermediate_dim, activation='relu')(inputs)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)

# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])

# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
plot_model(encoder, to_file='vae_mlp_encoder.png', show_shapes=True)

# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(original_dim, activation='sigmoid')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='vae_mlp_decoder.png', show_shapes=True)

# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae_mlp')

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    help_ = "Load h5 model trained weights"
    parser.add_argument("-w", "--weights", help=help_)
    help_ = "Use mse loss instead of binary cross entropy (default)"
    parser.add_argument("-m",
                        "--mse",
                        help=help_, action='store_true')
    args = parser.parse_args()
    models = (encoder, decoder)
    data = (x_test, y_test)

    # VAE loss = mse_loss or xent_loss + kl_loss
    if args.mse:
        reconstruction_loss = mse(inputs, outputs)
    else:
        reconstruction_loss = binary_crossentropy(inputs,
                                                  outputs)

    reconstruction_loss *= original_dim
    kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
    kl_loss = K.sum(kl_loss, axis=-1)
    kl_loss *= -0.5
    vae_loss = K.mean(reconstruction_loss + kl_loss)
    vae.add_loss(vae_loss)
    vae.compile(optimizer='adam')
    vae.summary()
    plot_model(vae,
               to_file='vae_mlp.png',
               show_shapes=True)

    if args.weights:
        vae.load_weights(args.weights)
    else:
        # train the autoencoder
        vae.fit(x_train,
                epochs=epochs,
                batch_size=batch_size,
                validation_data=(x_test, None))
        vae.save_weights('vae_mlp_mnist.h5')

    plot_results(models,
                 data,
                 batch_size=batch_size,
model_name="vae_mlp")

 

 

上面介绍了VAE的原理,看起来很复杂,其实最终VAE也实现了跟AutoEncoder类似的作用,输入一个序列,得到一个隐变量(从隐变量的分布中采样得到),然后将隐变量重构成原始输入。不同的是,VAE学习到的是隐变量的分布(允许隐变量存在一定的噪声和随机性),因此可以具有类似正则化防止过拟合的作用。

以下的构建一个VAE模型的keras代码,修改自keras的example代码,具体参数参考了Dount论文:

def sampling(args): """Reparameterization trick by sampling fr an isotropic unit Gaussian.  # Arguments:  args (tensor): mean and log of variance of Q(z|X)  # Returns:  z (tensor): sampled latent vector  """ z_mean, z_log_var = args batch = K.shape(z_mean)[0] dim = K.int_shape(z_mean)[1] # by default, random_normal has mean=0 and std=1.0 epsilon = K.random_normal(shape=(batch, dim)) std_epsilon = 1e-4 return z_mean + (z_log_var + std_epsilon) * epsilon input_shape = (seq_len,) intermediate_dim = 100 latent_dim = latent_dim # VAE model = encoder + decoder # build encoder model inputs = Input(shape=input_shape, name='encoder_input') x = Dense(intermediate_dim, activation='relu', kernel_regularizer=regularizers.l2(0.001))(inputs) x = Dense(intermediate_dim, activation='relu', kernel_regularizer=regularizers.l2(0.001))(x) z_mean = Dense(latent_dim, name='z_mean')(x) z_log_var = Dense(latent_dim, name='z_log_var', activation='softplus')(x) # use reparameterization trick to push the sampling out as input # note that "output_shape" isn't necessary with the TensorFlow backend z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var]) # build decoder model x = Dense(intermediate_dim, activation='relu', kernel_regularizer=regularizers.l2(0.001))(z) x = Dense(intermediate_dim, activation='relu', kernel_regularizer=regularizers.l2(0.001))(x) x_mean = Dense(seq_len, name='x_mean')(x) x_log_var = Dense(seq_len, name='x_log_var', activation='softplus')(x) outputs = Lambda(sampling, output_shape=(seq_len,), name='x')([x_mean, x_log_var]) vae = Model(inputs, outputs, name='vae_mlp') # add loss reconstruction_loss = mean_squared_error(inputs, outputs) reconstruction_loss *= seq_len kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var) kl_loss = K.sum(kl_loss, axis=-1) kl_loss *= -0.5 vae_loss = K.mean(reconstruction_loss + kl_loss) vae.add_loss(vae_loss) vae.compile(optimizer='adam') 

基于VAE的周期性KPI异常检测方法其实跟AutoEncoder基本一致,可以使用重构误差来判断异常,来下面是结果,上图是原始输入,下图是重构结果,我们能够看到VAE重构的结果比AutoEncoder的更好一些。

转载于:https://www.cnblogs.com/bonelee/p/9851104.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值