Deep Learning-TensorFlow (14) CNN卷积神经网络_深度残差网络 ResNet

本文介绍了ResNet(残差神经网络)的基本概念,该网络由Kaiming He等人提出,旨在解决深度神经网络中由于层数加深导致的性能下降问题。ResNet利用残差块实现信息的直接传递,从而有效训练极深的网络。通过 shortcut connections 学习输入和输出的差值,使得训练误差随层数增加而减小。在ILSVRC 2015比赛中,ResNet取得了冠军,并因其出色的性能和推广性,被广泛应用于卷积神经网络研究,包括Inception V4和Inception-ResNet-V2等模型。
摘要由CSDN通过智能技术生成

环境:Win8.1 TensorFlow1.0.1

软件:Anaconda3 (集成Python3及开发环境)

TensorFlow安装:pip install tensorflow (CPU版) pip install tensorflow-gpu (GPU版)

TFLearn安装:pip install tflearn


参考:

Deep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun


1. 前言


ResNet(Residual Neural Network)由前微软研究院的 Kaiming He 等4名华人提出,通过使用 Residual Blocks 成功训练152层深的神经网络,在 ILSVRC 2015 比赛中获得了冠军,取得 3.57% 的 top-5 错误率,同时参数量却比 VGGNet 低,效果非常突出。ResNet 的结构可以极快地加速超深神经网络的训练,模型的准确率也有非常大的提升。上一篇博文讲解了 Inception,而 Inception V4 则是将 Inception Module 和 ResNet 相结合。可以看到 ResNet 是一个推广性非常好的网络结构,甚至可以直接应用到 Inception Net 中。


CVPR16 上何凯明、张祥雨、任少卿和孙剑四人的 Deep Residual Learning for Image Recognition 毫无争议地获得了 Best Paper

关于这篇文章细节可参考:

  1. 获奖无数的深度残差学习,清华学霸的又一次No.1 | CVPR2016 最佳论文
  2. 秒懂!何凯明的深度残差网络PPT是这样的|ICML2016 tutorial

2. 问题


作者首先提出的问题是&#

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值