环境:Win8.1 TensorFlow1.0.1
软件:Anaconda3 (集成Python3及开发环境)
TensorFlow安装:pip install tensorflow (CPU版) pip install tensorflow-gpu (GPU版)
TFLearn安装:pip install tflearn
参考:
Deep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
1. 前言
ResNet(Residual Neural Network)由前微软研究院的 Kaiming He 等4名华人提出,通过使用 Residual Blocks 成功训练152层深的神经网络,在 ILSVRC 2015 比赛中获得了冠军,取得 3.57% 的 top-5 错误率,同时参数量却比 VGGNet 低,效果非常突出。ResNet 的结构可以极快地加速超深神经网络的训练,模型的准确率也有非常大的提升。上一篇博文讲解了 Inception,而 Inception V4 则是将 Inception Module 和 ResNet 相结合。可以看到 ResNet 是一个推广性非常好的网络结构,甚至可以直接应用到 Inception Net 中。
在 CVPR16 上何凯明、张祥雨、任少卿和孙剑四人的 Deep Residual Learning for Image Recognition 毫无争议地获得了 Best Paper。
关于这篇文章细节可参考:
2. 问题
作者首先提出的问题是&#