主定理与递归树计算算法时间复杂度

主定理如下定义:


例如归并排序中,a=b=2,f(n)=n,T(n)=2T(n/2)+n,那么,满足第二种情况,则T(n)=O(nlogn)。

对于递归方程T(n)=aT(n/b+f(n)的求解,可以使用递归树,用归并排序为例:


每一节点中都将当前的自由项n留在其中,而将两个递归项T(n/2) + T(n/2)分别摊给了他的两个子节点,如此循环。

图中所有节点之和为:nlogn

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 根据递归式构造递归的步骤如下: 1. 将递归式写成递归形式。 2. 将递归式的输入规模不断缩小直到到达递归边界。 3. 画出递归,每个节点表示每次递归调用的复杂度。 4. 对递归进行求和,得到总的时间复杂度。 下面来看一个具体的例子:假设有如下递归式:T(n) = T(n/2) + O(1),其中n是输入规模。 我们可以将递归式写成递归形式:T(n) = T(n/2) + O(1) 当n=1时,递归终止,T(1) = O(1) 根据递归式,每次递归调用的复杂度为O(1),因此递归如下所示: ``` T(n) | T(n/2) | T(n/4) | ... | T(1) ``` 对递归求和,得到总的时间复杂度: T(n) = O(1) + O(1) + ... + O(1) = O(log n) 另一个例子是斐波那契数列的递归实现:F(n) = F(n-1) + F(n-2),其中n是输入规模。 我们可以将递归式写成递归形式:F(n) = F(n-1) + F(n-2) 当n=0或n=1时,递归终止,F(0) = 0,F(1) = 1 根据递归式,每次递归调用的复杂度为O(1),因此递归如下所示: ``` F(n) / \ F(n-1) F(n-2) / \ / \ F(n-2) F(n-3) F(n-3) F(n-4) ... ... ... ... F(1) F(0) F(2) F(1) / / / \ F(1) F(0) F(1) F(0) ... ... ``` 对递归求和,得到总的时间复杂度: F(n) = F(n-1) + F(n-2) + O(1) = O(2^n) 因此,斐波那契数列的递归实现的时间复杂度为指数级别。 ### 回答2: 根据递归式构造递归的步骤如下: 1. 根据递归式,首先确定递归函数的基本情况(递归终止条件)和递归时的处理步骤。 2. 画出递归,将每一层递归的调用过程表示为一个节点,并将不同层次之间的递归关系表示为的分支。 3. 对递归进行分析,计算每个节点的时间复杂度,并根据的深度计算总的时间复杂度。 下面以斐波那契数列为例说明: 递归式:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。 1. 基本情况:当n为0或1时,F(n)的值已知。 2. 递归处理:根据递归式,计算F(n-1)和F(n-2)的值,并将它们相加,得到F(n)的值。 3. 递归示例:以计算F(5)为例,递归如下所示: F(5) / \ F(4) F(3) / \ / \ F(3) F(2) F(2) F(1) / \ F(2) F(1) 4. 分析时间复杂度:每个节点的时间复杂度都为O(1),递归的深度为n,因此总的时间复杂度为O(n)。 除了斐波那契数列,还有其他一些常见的递归函数,如阶乘函数、二叉的遍历等,都可以使用类似的方进行递归的构造和时间复杂度的分析。但需要注意的是,递归函数的时间复杂度分析可能并不准确,因为递归的分支数和层数可能会因具体问题而异。因此,除了递归,还可以使用递推公式、主定理等方求解递归函数的时间复杂度。 ### 回答3: 递归是一种用来描述递归算法时间复杂度的图示方。构造递归可以帮助我们直观地理解递归算法的执行过程,并对算法时间复杂度进行分析。 构造递归的基本步骤如下: 1. 根据递归式确定递归算法的基本情况,即递归终止条件。这些基本情况通常是递归算法的边界情况,可以直接得到结果或返回特定值。 2. 根据递归式将问题划分为规模较小但与原问题类似的子问题。每个子问题的规模应该比原问题的规模要小,以便递归可以终止。 3. 构造递归,将原问题的求解过程表示为结构。每个节点表示一个子问题,的根节点表示原问题。 4. 分析递归算法时间复杂度。通过递归可以观察到递归算法递归次数和每次递归所需的时间。将每层递归时间复杂度相加,即可得到总的时间复杂度。 以下是几个示例: 示例1:计算斐波那契数列第n项的值。 递归式:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。 递归终止条件:当n为0或1时,直接返回n。 构造递归的每层对应一个递归调用,直到递归终止。每个节点代表一个递归问题的规模。 时间复杂度分析:递归的深度是n,每层的时间复杂度都是O(1),因此总的时间复杂度是O(n)。 示例2:计算阶乘n!的值。 递归式:n! = n * (n-1)! 递归终止条件:当n为0时,直接返回1。 构造递归的每层对应一个递归调用,直到递归终止。每个节点代表一个递归问题的规模。 时间复杂度分析:递归的深度是n,每层的时间复杂度都是O(1),因此总的时间复杂度是O(n)。 示例3:归并排序算法递归式:MergeSort(arr, start, end) = Merge(MergeSort(arr, start, mid), MergeSort(arr, mid+1, end)) 递归终止条件:当start等于end时,直接返回。 构造递归的每层对应一个递归调用,直到递归终止。每个节点代表一个递归问题的规模。 时间复杂度分析:递归的深度是log(n),每层的时间复杂度都是O(n),因此总的时间复杂度是O(nlog(n))。 通过构造递归和分析时间复杂度,我们可以更好地理解递归算法的执行流程,并对算法时间复杂度进行评估和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值