【Atcoder】 [ARC152C] Pivot

题目链接

Atcoder方向
Luogu方向

题目解法

考虑 2 s − a i 2s-a_i 2sai 类似翻转操作,于是把数列放在数轴上做
考虑一次操作是把 a 1 , . . . , a n a_1,...,a_n a1,...,an s s s 翻转,且没有数为负数
可以得到 2 个性质:

  1. a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an 中最大最小值一定为 a 1 , a n a_1,a_n a1,an,且距离不变
    所以可以把求最小的最大值 变为 求最小的最小值
  2. 任何时候数列一定只会有 2 种形态:
    a 1 , . . . , a n : A a_1,...,a_n:A a1,...,an:A 形态
    a n , . . . , a 1 : B a_n,...,a_1:B an,...,a1:B 形态

考虑有 A A A B B B,绕 a i a_i ai 翻转
那么 a n a_n an 会变为 2 a i − a n 2a_i-a_n 2aian,是当前序列中的最小值,那么当前操作把最小值变小了 a 1 + a n − 2 a i a_1+a_n-2a_i a1+an2ai
考虑 B B B 操作是 A A A 操作的相反操作,那么绕 a i a_i ai 翻转的效益一定可以为 b i = ∣ a 1 + a n − 2 a i ∣ b_i=|a_1+a_n-2a_i| bi=a1+an2ai(可能在奇数次操作,也可能在偶数次操作)

考虑证明 a i a_i ai 一定可以造成 ∣ a 1 + a n − 2 a i ∣ |a_1+a_n-2a_i| a1+an2ai 的效益
如果当前一步 a i a_i ai 造成的效益为 − ∣ a 1 + a n − 2 a i ∣ -|a_1+a_n-2a_i| a1+an2ai,那么可以先翻转 a n a_n an,再翻转 a i a_i ai,然后翻转 a 1 a_1 a1 ,就可以达到序列往前平移 ∣ a 1 + a n − 2 a i ∣ |a_1+a_n-2a_i| a1+an2ai 的效果

所以当前序列可以往前平移的值为 x 1 b 1 + x 2 b 2 + . . . + x n b n x_1b_1+x_2b_2+...+x_nb_n x1b1+x2b2+...+xnbn
根据裴蜀定理,这个值一定为 ( b 1 , b 2 , . . . , b n ) (b_1,b_2,...,b_n) (b1,b2,...,bn) 的倍数
所以答案为 a n − a 1 + a 1 % d    ( d = ( b 1 , b 2 , . . . , b n ) ) a_n-a_1+a_1\% d\;(d=(b_1,b_2,...,b_n)) ana1+a1%d(d=(b1,b2,...,bn))

#include <bits/stdc++.h>
using namespace std;
const int N(200100);
int n,a[N],b[N];
inline int read(){
	int FF=0,RR=1;
	char ch=getchar();
	for(;!isdigit(ch);ch=getchar()) if(ch=='-') RR=-1;
	for(;isdigit(ch);ch=getchar()) FF=(FF<<1)+(FF<<3)+ch-48;
	return FF*RR;
}
int main(){
	n=read();
	for(int i=1;i<=n;i++) a[i]=read();
	for(int i=1;i<=n;i++) b[i]=abs(2*a[i]-a[1]-a[n]);
	int res=b[1];
	for(int i=2;i<=n;i++) res=__gcd(res,b[i]);
	printf("%d",a[1]%res+a[n]-a[1]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值