RNN(循环/递归神经网络)详解

Cmd Markdown公式指导手册

上一篇:四种基本的神经网络架构

1、RNN概述

上篇文章四种基本的神经网络架构中,我们介绍了RNN(Recurrent Neural Network)。基于RNN的语言模型主要有两方面的应用:
一,基于每个序列在现实世界中出现的可能性对其进行打分,这实际上提供了一个针对语法和语义正确性的度量,语言模型通常为作为机器翻译系统的一部分。
二,语言模型可以用来生成新文本。根据莎士比亚的作品训练语言模型可以生成莎士比亚风格的文本。
RNN背后的思想是利用顺序信息。在传统的神经网络中,我们假设所有的输入(包括输出)之间是相互独立的。对于很多任务来说,这是一个非常糟糕的假设。如果你想预测一个序列中的下一个词,你最好能知道哪些词在它前面,传统神经网络显然不能做到,而这类基于时间的序列:一段段连续的语音,一段段连续的手写文字。这些序列比较长,且长度不一,比较难直接的拆分成一个个独立的样本来通过DNN/CNN进行训练。而对于这类问题,RNN则比较的擅长。那么RNN是怎么做到的呢?RNN假设我们的样本是基于序列的。比如是从序列索引1到序列索引τ的。对于这其中的任意序列索引号t,它对应的输入是对应的样本序列中的 x t x^t xt。而模型在序列索引号t位置的隐藏状态 h t h^t ht,则由 x t x^t xt和在t−1位置的隐藏状态 h t − 1 h^{t−1} ht1共同决定。在任意序列索引号t,我们也有对应的模型预测输出 o t o^t ot。通过预测输出 o t o^t ot和训练序列真实输出 y t y^t yt,以及损失函数 L t L^t Lt,我们就可以用DNN类似的方法来训练模型,接着用来预测测试序列中的一些位置的输出。RNN之所以循环的,是因为它针对系列中的每一个元素都执行相同的操作,每一个操作都依赖于之前的计算结果。换一种方式思考,可以认为RNN记忆了到当前为止已经计算过的信息。理论上,RNN可以利用任意长的序列信息,但实际中只能回顾之前的几步。这是因为RNN在反向传播的过程中会产生梯度消失或梯度爆炸问题。

2、RNN模型

RNN有比较多的模型,主流RNN模型结构如下:

上图中左边是RNN模型没有按时间展开的图,如果按时间序列展开,则是上图中的右边部分。我们重点观察右边部分的图。这幅图描述了在序列索引号t附近RNN的模型。其中:
1) x t x^t xt代表在序列索引号t时训练样本的输入。同样的, x t − 1 x^{t-1} xt1 x t + 1 x^{t+1} xt+1代表在序列索引号t−1和t+1时训练样本的输入。
2) h t h^t ht代表在序列索引号t时模型的隐藏状态。 h t h^t ht x t x^t xt h t − 1 h^{t-1} ht1共同决定。
3) o t o^t ot代表在序列索引号t时模型的输出。 o t o^t ot只由模型当前的隐藏状态 h t h^t ht决定。
4) L t L^t Lt代表在序列索引号t时模型的损失函数。
5) y t y^t yt代表在序列索引号t时训练样本序列的真实输出。
6)U,W,V这三个矩阵是我们的模型的线性关系参数,它在整个RNN网络中是共享的,这点和DNN很不相同。 也正因为是共享了,它体现了RNN的模型的“循环反馈”的思想。

3、RNN前向传播算法

有了上面的模型,RNN的前向传播算法就很容易得到了。对于任意一个序列索引号t,我们隐藏状态 h t h^t ht x t x^t xt h t − 1 h^{t−1} ht1得到:
h t h^t ht= σ ( z t ) σ(z^t) σ(zt)= σ ( U x t + W h t − 1 σ(Ux^t+Wh^{t−1} σ(Uxt+Wht1+b)
其中σ为RNN的激活函数,一般为tanh, b为线性关系的偏置。
序列索引号t时模型的输出 o t o^t ot的表达式比较简单: o t = V h t + c o^t=Vh^t+c ot=Vht+c
在最终在序列索引号t时我们的预测输出为: y ^ t \hat{y}^t y^t= σ ( o t ) σ(o^t) σ(ot)
通常由于RNN是识别类的分类模型,所以上面这个激活函数一般是softmax。
通过损失函数 L t L^t Lt,比如对数似然损失函数,我们可以量化模型在当前位置的损失,即 y ^ t \hat{y}^t y^t y ^ t \hat{y}^{t} y^t的差距。

4、RNN反向传播算法推导

有了RNN前向传播算法的基础,就容易推导出RNN反向传播算法的流程了。RNN反向传播算法的思路和DNN是一样的,即通过梯度下降法进行的迭代,得到合适的RNN模型参数U,W,V,b,c。由于我们是基于时间反向传播,所以RNN的反向传播有时也叫做BPTT(back-propagation through time)。当然这里的BPTT和DNN也有很大的不同点,即这里所有的U,W,V,b,c在序列的各个位置是共享的,反向传播时我们更新的是相同的参数。
为了简化描述,这里的损失函数我们为交叉熵损失函数,输出的激活函数为softmax函数,隐藏层的激活函数为tanh函数。
对于RNN,由于我们在序列的每个位置都有损失函数,因此最终的损失L为: L = ∑ t = 1 τ L ( t ) L=\sum_{t=1}^τ{L^{(t)}} L=t=1τL(t)
其中V,c,的梯度计算是比较简单的:
∂ L ∂ c = ∑ t = 1 τ ∂ L ( t ) ∂ c = ∑ t = 1 τ y ^ ( t ) − y ( t ) \frac{∂L}{∂c}=\sum_{t=1}^τ \frac{∂L^{(t)}}{∂c}=\sum_{t=1}^τ \hat{y}^{(t)}−y^{(t)} cL=t=1τcL(t)=t=1τy^(t)y(t)
∂ L ∂ V = ∑ t = 1 τ ∂ L ( t ) ∂ V = ∑ t = 1 τ ( y ^ ( t ) − y ( t ) ) ( h t ) T \frac{∂L}{∂V}=\sum_{t=1}^τ \frac {∂L^{(t)}}{∂V}=\sum_ {t=1}^τ (\hat y^{(t)}−y^{(t)})(h^t)^T VL=t=1τVL(t)=t=1τ(y^(t)y(t))(ht)T
但是W,U,b的梯度计算就比较的复杂了。从RNN的模型可以看出,在反向传播时,在某一序列位置t的梯度损失由当前位置的输出对应的梯度损失和序列索引位置t+1时的梯度损失两部分共同决定。对于W在某一序列位置t的梯度损失需要反向传播一步步的计算。我们定义序列索引t位置的隐藏状态的梯度为:
δ ( t ) δ^{(t)} δ(t)= ∂ L ∂ h ( t ) \frac{∂L}{∂h^{(t)}} h(t)L
这样我们可以像DNN一样从 δ ( t + 1 ) δ^{(t+1)} δ(t+1)递推 δ ( t ) δ^{(t)} δ(t)
δ ( t ) = ( ∂ o ( t ) ∂ h ( t ) ) T ∂ L ∂ o ( t ) + ( ∂ h ( t + 1 ) ∂ h ( t ) ) T ∂ L ∂ h ( t + 1 ) = V T ( y ^ ( t ) − y ( t ) ) + W T d i a g ( 1 − ( h ( t + 1 ) ) 2 ) δ ( t + 1 ) δ^{(t)}=(\frac{∂o^{(t)}}{∂h^{(t)}})^T\frac{∂L}{∂o^{(t)}}+(\frac{∂h^{(t+1)}}{∂h^(t)})^T\frac{∂L}{∂h^{(t+1)}}=V^T(\hat y^{(t)}−y^{(t)})+W^Tdiag(1−(h^{(t+1)})^2)δ^{(t+1)} δ(t)=(h(t)o(t))To(t)L+(h(t)h(t+1))Th(t+1)L=VT(y^(t)y(t))+WTdiag(1(h(t+1))2)δ(t+1)
对于 δ ( τ ) δ^{(τ)} δ(τ),由于它的后面没有其他的序列索引了,因此有:
δ ( τ ) = ( ∂ o ( τ ) ∂ h ( τ ) ) T ∂ L ∂ o ( τ ) = V T ( y ^ ( τ ) − y ( τ ) ) δ^{(τ)}=(\frac{∂o^{(τ)}}{∂h^{(τ)}})^T\frac{∂L}{∂o^{(τ)}}=V^T(\hat y^{(τ)}−y^{(τ)}) δ(τ)=(h(τ)o(τ))To(τ)L=VT(y^(τ)y(τ))
有了 δ ( t ) δ^{(t)} δ(t),计算W,U,b就容易了,这里给出W,U,b的梯度计算表达式:
∂ L ∂ W = ∑ t = 1 τ d i a g ( 1 − ( h ( t ) ) 2 ) δ ( t ) ( h ( t − 1 ) ) T \frac{∂L}{∂W}=\sum_{t=1}^τ diag(1−(h^{(t)})^2)δ^{(t)}(h^{(t−1)})^T WL=t=1τdiag(1(h(t))2)δ(t)(h(t1))T
∂ L ∂ b = ∑ t = 1 τ d i a g ( 1 − ( h ( t ) ) 2 ) δ ( t ) \frac{∂L}{∂b}=\sum_{t=1}^τ diag(1−(h^{(t)})^2)δ^{(t)} bL=t=1τdiag(1(h(t))2)δ(t)
∂ L ∂ U = ∑ t = 1 τ d i a g ( 1 − ( h ( t ) ) 2 ) δ ( t ) ( x ( t ) ) T \frac{∂L}{∂U}=\sum _{t=1}^τdiag(1−(h^{(t)})^2)δ^{(t)}(x^{(t)})^T UL=t=1τdiag(1(h(t))2)δ(t)(x(t))T
除了梯度表达式不同,RNN的反向传播算法和DNN区别不大,因此这里就不再重复总结了。

5、RNN弊端

在实际应用中普通的 RNN 是非常难以训练的:
假设有一段关键文字“xxxx[key]xxx…xxxx”要求 RNN 分析出与 key 相关的 结果,即文字中的 key 是 RNN 进行分析所需要的关键数据。但此时 key 出现在 句子开头(t1),此信息源的记忆要经过非常一段长的时间才可以达到最终状态点, 如图:
在这里插入图片描述
前向传播得到误差,反向传递误差时,每次都会乘一个系数 w,当这个 w 小 于 1 时,每次反向传递都会让 RNN 的误差缩小,经过若干次误差反向传递, 到 key 状态时,误差很近似等于 0 的情况,这就叫梯度消失或者梯度弥散,反 之,如果 w 大于 1,每次反向传递都会让 RNN 的误差变大,经过若干次误差的反向传递,到 key 的状态时,误差将会是一个非常大的数(无穷大),这种情况 叫做梯度爆炸。这样导致很难确定一个初始值让 RNN 收敛。为了解决RNN长依赖问题,提出了LSTM(长短期记忆网络)下节将会介绍。

6、参考链接

1、https://www.cnblogs.com/pinard/p/6509630.html
2、https://studentke.github.io/2019/04/21/understand-the-LSTM/
下一篇:LSTM、BiLSTM讲解及实践+GRU讲解

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值