哈希表(Hash Table)是一种通过键值映射实现高效数据存储与查询的数据结构。其核心在于通过哈希函数将关键字(Key)转换为存储地址(Index),从而快速定位数据。然而,哈希冲突(碰撞)是设计哈希表时必须解决的核心问题。以下将详细介绍哈希表的基本概念、哈希函数的设计方法以及常见的冲突解决方案。
一、哈希表的基本概念
1. 哈希表的结构
哈希表由以下几个部分组成:
- 键(Key):用于唯一标识数据的唯一值。
- 值(Value):对应键的值。
- 哈希地址(Index):由哈希函数计算得到的存储位置。
- 哈希表数组(Array):存储键值对的数组。
2. 哈希函数的作用
哈希函数的作用是将键值映射到哈希表的索引位置。常见的哈希函数设计方法包括:
- 直接定址法:直接将键作为索引。
- 除留余数法:将键对表长取余。
- 平方取中法:对键平方后取中间几位。
- 折叠法:将键分割成等长片段并进行合并。
- 数字分析法:选取分布均匀的部分作为哈希地址。
3. 哈希冲突(碰撞)
哈希冲突是指两个不同的键映射到同一个哈希地址的情况。哈希冲突可能导致查询效率下降,因此需要有效的冲突解决方法。
二、哈希函数的设计方法
1. 直接定址法
- 原理:f(x) = x,直接将键作为索引。
- 优点:无哈希冲突,时间复杂度为O(1)。
- 缺点:空间利用率低,尤其适用于稀疏数据。
- 适用场景:键值范围较小且连续。
2. 数字分析法
- 原理:分析键的分布规律,选取分布均匀的部分作为哈希地址。
- 优点:适合处理位数较多的键(如电话号码、身份证号)。
- 缺点:需提前了解键的分布特征。
- 适用场景:键值范围大且分布均匀。
3. 平方取中法
- 原理:对键平方后取中间几位。
- 优点:适合未知分布且位数较少的键。
- 缺点:键位数较大时效率低。
- 适用场景:键值范围较小时。