优点:
一是逻辑回归的算法已经比较成熟,预测较为准确;
二是模型求出的系数易于理解,便于解释,不属于黑盒模型,尤其在银行业,80%的预测是使用逻辑回归;
三是结果是概率值,可以做ranking model;
四是训练快。
缺点:
分类较多的y都不是很适用;
对于自变量的多重共线性比较敏感,所以需要利用因子分析或聚类分析来选择代表性的自变量;
另外预测结果呈现S型,两端概率变化小,中间概率变化大比较敏感,导致很多区间的变量的变化对目标概率的影响没有区分度,无法确定阈值。
优点:
一是逻辑回归的算法已经比较成熟,预测较为准确;
二是模型求出的系数易于理解,便于解释,不属于黑盒模型,尤其在银行业,80%的预测是使用逻辑回归;
三是结果是概率值,可以做ranking model;
四是训练快。
缺点:
分类较多的y都不是很适用;
对于自变量的多重共线性比较敏感,所以需要利用因子分析或聚类分析来选择代表性的自变量;
另外预测结果呈现S型,两端概率变化小,中间概率变化大比较敏感,导致很多区间的变量的变化对目标概率的影响没有区分度,无法确定阈值。