邓俊辉 数据结构 串

本文深入探讨了模式匹配问题,详细解析了KMP算法的next数组构造和理解,包括记忆法和查询表。同时,讨论了Bad Character(BC)策略在Boyer-Moore(BM)算法中的应用,以及Karp-Rabin算法的散列方法。通过实例和问题解答,帮助读者更好地掌握这些经典字符串匹配算法。
摘要由CSDN通过智能技术生成

ADT

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模式匹配(问题描述)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模式匹配(蛮力匹配)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

KMP算法(记忆法)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

KMP算法(查询表)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
问题:
应该是这样吧:next[]数组只与模式串有关,是一个int数组,数组长度与模式串的长度相同,描述了模式串的某样特征。

int []next = buildNext§;
构造next数组时,第一位next[0] = -1,用作某种标志位,next数组中除第一位的值都是数组的某个秩,值的大小不会超过next.length,为0表示无法匹配,为正整数表示可以跳转匹配

这种特征或许是模式串内部前后的相似,如果模式串是一个所有字符都互不相同的字符串,那么next[]数组主体就都为0了啊,(by haiyesensi )
答:理解正确。对于字符集较大的情况,KMP 没有优势。(by yuantailing 老师)

KMP算法(理解next[]表)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值