在好多字符串处理中,旋转与移位是很常见到的,在大规模的数据处理中设计高效的算法是必须的
示例:
把字符串abcdefgh循环左移3位,变为defghabc
输入字符串str与移位数m,输出结果
1、看到题之后一般的想法就是一位一位的移动
- abcdefgh
- bcdefgha
- cdefghab
- defghabc
实现代码如下
void movebit(string &str,int num)
{
int len=str.length();
for (int i=0;i<num;++i)
{
char temp=str[0];
for (int j=1;j<len;++j)
{
str[j-1]=str[j];
}
str[--j]=temp;
}
}
这样算法的时间复杂度为O(m*n)
2、在第一种方法中是一个字符一个字符的向后移动,这样后边的字符也得跟着移动m次,那么能不能一次就向后移动m个字符呢,答案是肯定的,这就是第二种方法,一次向后移动m个字符
- abcdefgh
- defabcgh
- defghcab
- defghabc
示例代码如下:
void movechar(string & ch,int num)
{
int len=ch.length();
if (len<=0||num>=len)
{
return;
}
int first=0; //第一次交换的字符位置
int middle=num;
int second=middle; //与之交换的位置
while (1)
{
char temp=ch[first];
ch[first]=ch[second];
ch[second]=temp;
first++;
second++;
if (first==middle)
{
if (second>=len) //交换完成,退出
{
return;
}
else //进行下一轮交换
{
middle=second;
}
}
else if (second>=len) //前半部分长,后半部分短,如defg abc h
{
second=middle;
}
}
}
3、接下来这种方法是利用字符串的翻转
先把字符串按移位的个数分为两部分,abc 与 defgh
思想是先对第一部分反转交换,第一个与最后一个交换,依次类推,交换之后分别为 cba 与 hgfed
最后对所得的字符串cbahgfed整体翻转,结果为defghabc,即我们要得到的结果
实现代码如下:
字符串翻转函数:
void revote(char *ch,int start,int end)
{
char temp;
while (start<end)
{
temp=ch[start];
ch[start]=ch[end];
ch[end]=temp;
++start;
--end;
}
}
void translate(char * ch,int num)
{
if (ch==NULL||num<=0||num>=strlen(ch))
{
return;
}
revote(ch,0,num-1); //对前一部分翻转
revote(ch,num,strlen(ch)-1); //对后一部分翻转
revote(ch,0,strlen(ch)-1); //整体翻转
}
4、最后一种方法是用最大公约数法,移动字符
利用公式 index=(i+m*j)%n
设m与n的最大公约数为k,则i为从0到k-1循环k次
如在示例中m=3,n=7,最大公约数为1,所以i只为0
下标计算结果为:0,3,6,2,5,1,4,0
依照这样的顺序进行移位,最后得到最终的结果
实现代码如下:
//用辗转相除法求最大公约数函数
int GCD(int m,int n)
{
if (n==0)
{
return m;
}
else
{
return GCD(n,m%n);
}
}
void Rotate(string &str,int num) { int len=str.length(); int commonNum=GCD(len,num); //求出的最大公约数 int time=len/commonNum; //计算内循环次数 for (int i=0;i<commonNum;++i) { char temp=str[i]; for (int j=0;j<time-1;++j) { str[(i+j*num)%len]=str[(i+(j+1)*num)%len]; //下标计算 (i+j*num)%len } str[(i+j*num)%len]=temp; } }
小结:总共介绍了4中字符串旋转的方法,其中第四种字符移动次数最少
当然,如果是循环右移m位,可以转变为循环左移n-m位