RSA-PRIMES PART1 目录
1. Factoring
利用 factordb.com 寻找prime number
2. Inferius Prime
同样利用 factordb.com 寻找p,q后 依次算出
from Crypto.Util.number import *
n = 742449129124467073921545687640895127535705902454369756401331
e = 3
ct = 39207274348578481322317340648475596807303160111338236677373
p=752708788837165590355094155871
q=986369682585281993933185289261
phi=(p-1)*(q-1)
d=inverse(e,phi)
m=pow(ct,d,n)
print(hex(m))
#crypto{****_b1g_pR1m35}
3. Monoprime
这道题利用 Fermat's little Theorem 来解决!
既,n为prime number的时候
from gmpy2 import *
n=171731371218065444125482536302245915415603318380280392385291836472299752747934607246477508507827284075763910264995326010251268493630501989810855418416643352631102434317900028697993224868629935657273062472544675693365930943308086634291936846505861203914449338007760990051788980485462592823446469606824421932591
e = 65537
ct=16136755034673060445145475618902893896494128034766209879877546601946337561070007484010577687379160507009255465019048603036712101157817152575960077473989045841459385770999407251629099813584695659666