在算术运算中,1+5=6,1-9= - 8。那么用OpenCV读取图像后的图像的矩阵运算也是否如此呢?
我们先找来了两张图片,
分别命名为cat.jpg和dog.jpg,将两张图片对应的矩阵相加并显示结果cat_add_dog,然后输出这三张图片位于左下角(183,1)的像素值,代码如下:
猫+狗既非猫也非狗,144+240=384也不是第三行的255,到底怎么回事呢?
对于三通道的彩色通道而言,Mat cat=imread("cat.jpg")代码执行完以后,矩阵cat里面的RGB分别以uchar的数据类型保存,当运算的结果超出uchar的最大值2^8-1=255后,最终OpenCV给的结果仍然是255。
同理如果用这两个像素值相减,144-240也不会是 - 96,而是uchar能表示的最小值0。最后的结果是这样的:
完整代码如下:
本专栏的github为
https://github.com/uptodiff/OpenCVLearning
我们先找来了两张图片,
#include
#include
#include
#include
using namespace std;
using namespace cv;
int main()
{
Mat cat=imread("cat.jpg");
cout<<"pixel of cat at(183,1) "<<(int)cat.at(182,1)<<endl;
Mat dog=imread("dog.jpg");
cout<<"pixel of dog at(183,1) "<<(int)dog.at(182,1)<<endl;
Mat cat_add_dog=cat+dog;
cout<<"pixel of cat_add_dog at(183,1) "<<(int)cat_add_dog.at(182,1)<<endl;
imshow("cat_add_dog",cat_add_dog);
cvWaitKey(0);
return 0;
}
(183,1)为图像左下角的像素点位置,因为下标从0开始,读取时坐标代码变为(182,1),程序结果如下:
猫+狗既非猫也非狗,144+240=384也不是第三行的255,到底怎么回事呢?
对于三通道的彩色通道而言,Mat cat=imread("cat.jpg")代码执行完以后,矩阵cat里面的RGB分别以uchar的数据类型保存,当运算的结果超出uchar的最大值2^8-1=255后,最终OpenCV给的结果仍然是255。
同理如果用这两个像素值相减,144-240也不会是 - 96,而是uchar能表示的最小值0。最后的结果是这样的:
完整代码如下:
#include "stdafx.h"
#include
#include
#include
#include
using namespace std;
using namespace cv;
int main()
{
Mat cat=imread("cat.jpg");
cout<<"pixel of cat at(183,1) "<<(int)cat.at(182,1)<<endl;
Mat dog=imread("dog.jpg");
cout<<"pixel of dog at(183,1) "<<(int)dog.at(182,1)<<endl;
Mat cat_add_dog=cat+dog;
cout<<"pixel of cat_add_dog at(183,1) "<<(int)cat_add_dog.at(182,1)<<endl;
imshow("cat_add_dog",cat_add_dog);
Mat cat_minus_dog=cat-dog;
cout<<"pixel of cat_minus_dog at(183,1) "<<(int)cat_minus_dog.at(182,1)<<endl;
imshow("cat_minus_dog",cat_minus_dog);
cvWaitKey(0);
return 0;
}
这个坑你学会跳了吗?
还有要记得猫非狗。
本专栏的github为
https://github.com/uptodiff/OpenCVLearning
如果我的文章对您有所启发和一点收获,不妨打赏一下吧。您的支持将鼓励我继续创作!
(本文内容均为原创,转载请注明出处。部分图片来自网络,侵权删除。)
扫码关注
实用AI客栈
获取最新AI资讯与实战案例
小编微信号 : langu86