《情感计算》书籍及视频等

【2022全国科技周】CSIG情感计算与理解专委会: 情感计算科普讲座

【2022全国科技周】CSIG情感计算与理解专委会: 情感计算科普讲座_哔哩哔哩_bilibili

【研究生速进!】全网最新最全的多模态情感识别前沿论文带读,代码与教程一并打包!——人工智能|AI|计算机视觉|机器学习

【研究生速进!】全网最新最全的多模态情感识别前沿论文带读,代码与教程一并打包!——人工智能|AI|计算机视觉|机器学习_哔哩哔哩_bilibili

情感分类 | KNN算法 | 原理简介+代码讲解 | 文本分析【python-sklearn】

情感分类 | KNN算法 | 原理简介+代码讲解 | 文本分析【python-sklearn】_哔哩哔哩_bilibili

【绝对干货!】Pytorch框架—文本情感分类问题项目实战手把手带你做项目!(深度学习/计算机视觉/图像处理/神经网络/文本分类)

【绝对干货!】Pytorch框架—文本情感分类问题项目实战手把手带你做项目!(深度学习/计算机视觉/图像处理/神经网络/文本分类)_哔哩哔哩_bilibili

[ValseWebinar] 知面而知心——视觉中的情感计算

[ValseWebinar] 知面而知心——视觉中的情感计算_哔哩哔哩_bilibili







【124th】面部情感识别FER

【124th】面部情感识别FER_哔哩哔哩_bilibili

新手狂喜!一小时带你搞懂【LSTM情感分析】,架构解读+案例实战+数据集处理,深度学习NLP核心知识点竟然被他讲得如此透彻!!!

新手狂喜!一小时带你搞懂【LSTM情感分析】,架构解读+案例实战+数据集处理,深度学习NLP核心知识点竟然被他讲得如此透彻!!!_哔哩哔哩_bilibili

基于TensorFlow——LSTM情感分析项目实战!半天即可学会,含配套课程资料,5集全!—深度学习、LSTM、情感分析、TensorFlow、计算机技术_哔哩哔哩_bilibili

[毕设] 基于机器学习的新闻评论情感分析方法研究

[毕设] 基于机器学习的新闻评论情感分析方法研究_哔哩哔哩_bilibili

42ndCSIG云上微表情:多模态情感计算:从表情到大脑

42ndCSIG云上微表情:多模态情感计算:从表情到大脑_哔哩哔哩_bilibili

【139th】可计算情感与计算精神病学

【139th】可计算情感与计算精神病学_哔哩哔哩_bilibili







20thCSIG云上微表情:基于脑电的情感计算研究

20thCSIG云上微表情:基于脑电的情感计算研究_哔哩哔哩_bilibili

近来超火的NLP文本情感分析到底是啥?一节课带你搞懂

近来超火的NLP文本情感分析到底是啥?一节课带你搞懂_哔哩哔哩_bilibili

【图像情感计算】开放环境非受限图像情感计算-南开大学-杨巨峰教授

【图像情感计算】开放环境非受限图像情感计算-南开大学-杨巨峰教授_哔哩哔哩_bilibili

情感计算

情感计算_哔哩哔哩_bilibili

Tutorial:情感计算(2021北京智源大会视频回放系列)

Tutorial:情感计算(2021北京智源大会视频回放系列)_哔哩哔哩_bilibili







MIT教授 Rosalind Picard_情感计算、情绪、隐私与健康[中英精校]

MIT教授 Rosalind Picard_情感计算、情绪、隐私与健康[中英精校]_哔哩哔哩_bilibili

自动化所陶建华:音视频中情感计算的问题与挑战

自动化所陶建华:音视频中情感计算的问题与挑战_哔哩哔哩_bilibili

大模型时代的情感理解与情感支持|徐睿峰哈尔滨工业大学(深圳)智能学部副主任

大模型时代的情感理解与情感支持|徐睿峰哈尔滨工业大学(深圳)智能学部副主任_哔哩哔哩_bilibili

《爱情数学》|爱情数学:揭秘恋爱背后的规律与算法|从恋爱心理学和数学角度看待爱情!|恋爱调查告诉你如何找到理想的另一半!

《爱情数学》|爱情数学:揭秘恋爱背后的规律与算法|从恋爱心理学和数学角度看待爱情!|恋爱调查告诉你如何找到理想的另一半!_哔哩哔哩_bilibili

IMDB电影评论情感分类,word embedding实战,LSTM实战,pytorch实战,NLP文本分类实战

IMDB电影评论情感分类,word embedding实战,LSTM实战,pytorch实战,NLP文本分类实战_哔哩哔哩_bilibili







30th云上微表情:计算机视觉与心理学中的面孔情感计算线索研究

30th云上微表情:计算机视觉与心理学中的面孔情感计算线索研究_哔哩哔哩_bilibili

【129th】⚡语音情感识别⚡的⚡深度表征学习⚡

【129th】⚡语音情感识别⚡的⚡深度表征学习⚡_哔哩哔哩_bilibili

大问题:爱情可以科学计算吗?

大问题:爱情可以科学计算吗?_哔哩哔哩_bilibili

Hugging Face 模型微调训练 - 基于 BERT 的中文评价情感分析!带你玩转NLP核心框架—BERT模型!

Hugging Face 模型微调训练 - 基于 BERT 的中文评价情感分析!带你玩转NLP核心框架—BERT模型!_哔哩哔哩_bilibili

基于堆叠transformer进行NLP任务-情感分析-pytorch代码详细解读

基于堆叠transformer进行NLP任务-情感分析-pytorch代码详细解读_哔哩哔哩_bilibili







吹爆!这是我见过最简单的【文本情感分析实战】教程!五大类型情感分析实战一次学到饱!——人工智能、机器学习、BERT、LSTM情感分析

吹爆!这是我见过最简单的【文本情感分析实战】教程!五大类型情感分析实战一次学到饱!——人工智能、机器学习、BERT、LSTM情感分析_哔哩哔哩_bilibili

【74th】(lab成果推荐)NHFNet-用于⚡️多模态情感分析⚡️的⚡️非同质融合网络

【74th】(lab成果推荐)NHFNet-用于⚡️多模态情感分析⚡️的⚡️非同质融合⚡️网络_哔哩哔哩_bilibili

【绝对干货!】Pytorch框架—文本情感分类问题项目实战手把手带你做项目!(深度学习/计算机视觉/图像处理/神经网络/文本分类)

【绝对干货!】Pytorch框架—文本情感分类问题项目实战手把手带你做项目!(深度学习/计算机视觉/图像处理/神经网络/文本分类)_哔哩哔哩_bilibili

基于机器学习的情感分析示例

基于机器学习的情感分析示例_哔哩哔哩_bilibili

【人工智能入门】使用3种深度学习算法进行IMDB影评情感分析

【人工智能入门】使用3种深度学习算法进行IMDB影评情感分析_哔哩哔哩_bilibili







用百度NLP,做语音识别情感分析,快速开发

用百度NLP,做语音识别情感分析,快速开发_哔哩哔哩_bilibili

实战练手!PyTorch基于RNN实现的情感分析项目分享!文本预处理、加载词向量、搭建RNN等一步到位!

实战练手!PyTorch基于RNN实现的情感分析项目分享!文本预处理、加载词向量、搭建RNN等一步到位!_哔哩哔哩_bilibili

【从Transformer到BERT模型精讲】基于BERT模型的情感分析实战!同济大佬带你从零解读Transformer及BERT模型!-附源码

【从Transformer到BERT模型精讲】基于BERT模型的情感分析实战!同济大佬带你从零解读Transformer及BERT模型!-附源码_哔哩哔哩_bilibili

论文有救了?【基于LSTM的股票价格预测+LSTM情感分析】不愧是计算机博士唐宇迪,讲的如此通俗易懂(人工智能/深度学习模型/机器学习)

论文有救了?【基于LSTM的股票价格预测+LSTM情感分析】不愧是计算机博士唐宇迪,讲的如此通俗易懂(人工智能/深度学习模型/机器学习)_哔哩哔哩_bilibili

【基于python的电商评论情感分析-python实践-机器学习-情感分析】文本聚类-文本处理-毕业设计-数据爬取-一小时搞定毕业设计-专业讲师超详细讲解

【基于python的电商评论情感分析-python实践-机器学习-情感分析】文本聚类-文本处理-毕业设计-数据爬取-一小时搞定毕业设计-专业讲师超详细讲解_哔哩哔哩_bilibili







Pytorch深度学习实战:基于Pytorch框架实现中文文本情感分类!新手入门必备的Pytorch实战项目!

Pytorch深度学习实战:基于Pytorch框架实现中文文本情感分类!新手入门必备的Pytorch实战项目!_哔哩哔哩_bilibili

微博评论的情感分析及可视化

微博评论的情感分析及可视化_哔哩哔哩_bilibili

【新手入门向】基于Python的SnowNLP自然语言情感分析

【新手入门向】基于Python的SnowNLP自然语言情感分析_哔哩哔哩_bilibili

绝对是2023年最好最全的【情感分析实战】教程!轻松搭建文本情感分析系统!基于BERT的中文情感分析/RNN/LSTM情感分析

绝对是2023年最好最全的【情感分析实战】教程!轻松搭建文本情感分析系统!基于BERT的中文情感分析/RNN/LSTM情感分析_哔哩哔哩_bilibili

1小时我居然就跟着博士学会了五大类中文情感分析实战!基于BERT|GRU|LSTM|RNN|word2vec+SVM的中文情感分析实战,轻松搭建文本情感分析系统_哔哩哔哩_bilibili

BERT模型项目实战:中文情感分析、中文命名体识别、医学糖尿病命名体识别全详解,原理解读+项目实战,看完就能跑通!(人工智能/深度学习)_哔哩哔哩_bilibili

Python文本内容情感倾向分析语言分析

Python文本内容情感倾向分析语言分析_哔哩哔哩_bilibili







Python+机器学习的电商评论情感分析系统【echarts+vue】【计算机毕业设计-bs108】

Python+机器学习的电商评论情感分析系统【echarts+vue】【计算机毕业设计-bs108】_哔哩哔哩_bilibili

基于GRU的文本情感分析

基于GRU的文本情感分析_哔哩哔哩_bilibili

同济大学计算机博士通过LSTMs进行情绪分析,用少于50行的代码构建自己的模型!人工智能/神经网络/深度学习/机器学习/NLP

同济大学计算机博士通过LSTMs进行情绪分析,用少于50行的代码构建自己的模型!人工智能/神经网络/深度学习/机器学习/NLP_哔哩哔哩_bilibili

中英文评论的深度学习情感分类(RNN、LSTM、CNN、Bi-LSTM)

中英文评论的深度学习情感分类(RNN、LSTM、CNN、Bi-LSTM)_哔哩哔哩_bilibili




 




 聊一聊爆火的人工智能专业

聊一聊爆火的人工智能专业-CSDN博客

人工智能本科专业

https://baike.baidu.com/item/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD/24604211

人工智能

https://baike.baidu.com/item/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD/9180







AI人工智能需要掌握的数学知识

AI人工智能需要掌握的数学知识-CSDN博客

人工智能数学基础 书籍及视频等

人工智能数学基础 书籍及视频等-CSDN博客

AI人工智能的数学书籍(2025.03.03)

AI人工智能的数学书籍(2025.03.03)-CSDN博客




最优化方法

最优化方法-CSDN博客

数学物理方法 学习

数学物理方法 学习-CSDN博客







数字图像处理

数字图像处理-CSDN博客

《模式识别》学习

《模式识别》学习-CSDN博客

《机器学习》视频+书籍等

《机器学习》视频+书籍等-CSDN博客

《计算机视觉》学习

《计算机视觉》学习 -CSDN博客

《知识图谱》视频及书籍等

《知识图谱》视频及书籍等-CSDN博客







智能人机交互

智能人机交互-CSDN博客

人工智能哲学与伦理

人工智能哲学与伦理-CSDN博客

DeepSeek学习(2025.03.03)

DeepSeek学习(2025.03.03)_deepseek 博客-CSDN博客




2023 研究前沿 2023全球工程前沿

2023 研究前沿 2023全球工程前沿-CSDN博客

2024科技前沿与工程前沿

2024科技前沿与工程前沿-CSDN博客

2017-2024 研究前沿、工程前沿

2017-2024 研究前沿、工程前沿-CSDN博客

研究前沿报告 全球工程前沿

研究前沿报告




<think>好的,我现在需要处理用户关于情感分析课程设计的查询。用户之前询问过相关的情感分析资料和教程,现在需要更详细的课程设计建议。首先,我应该回顾之前提供的引用内容,看看是否有相关的资源可以再次利用。 用户提到的引用包括戴师兄的数据分析课程、微博舆情分析系统、豆瓣电影分析系统以及Python毕业设计项目。这些资源中,引用[2]和[4]涉及微博情感分析,可能包含情感分析的具体实现方法,比如使用SnowNLP等技术。引用[3]中的豆瓣电影分析系统展示了数据可视化和Flask框架的应用,这可能对课程设计的可视化部分有帮助。 接下来,我需要整理一个课程设计的大纲。通常课程设计需要目标、技术选型、实现步骤、参考资料等部分。技术选型方面,Python是主要语言,结合Flask框架、MySQL数据库,以及SnowNLP或NLTK库进行情感分析。数据采集部分可能需要爬虫技术,比如使用Scrapy或Requests库,但用户可能也需要考虑合法性和道德问题,所以需要提醒遵守网站规则。 实现步骤方面,可以分为数据采集、预处理、分析、可视化和系统开发。每个步骤需要详细说明使用的工具和方法。例如,数据预处理包括清洗、分词、去除停用词等,情感分析部分可以用SnowNLP计算情感分值,或者使用预训练模型如BERT。可视化可以用ECharts或Matplotlib。 然后,用户可能需要参考资料和教程。之前提供的引用中有几个项目源码和教程链接,比如引用[2]和[4]的微博舆情系统,这些可以作为实际案例参考。此外,推荐一些书籍和在线资源,如《Python自然语言处理实战》和Kaggle的相关项目,帮助用户深入学习。 在推荐资源时,需要确保链接和书籍信息准确,并提醒用户注意代码规范和版权问题。最后,生成相关问题,帮助用户进一步探索,比如模型优化、多语言支持、实时分析等方向。 需要检查是否有遗漏的部分,比如数据存储部分是否需要详细说明,或者是否需要加入机器学习模型训练的步骤。另外,考虑到课程设计的时间限制,可能需要建议简化部分功能,优先实现核心情感分析和可视化。 最后,确保回答结构清晰,分点明确,符合用户要求的格式,使用中文,并正确引用之前的参考资料。同时,生成的三个相关问题要相关且有引导性,帮助用户深入思考。</think>### 情感分析课程设计完整指南 #### 一、课程设计目标 通过构建情感分析系统,掌握文本数据采集、清洗、情感计算及可视化全流程,完成从理论到实践的闭环[^2][^4]。 #### 二、技术选型建议 | 模块 | 推荐工具库 | 应用场景 | |------------|--------------------------|------------------------------| | 数据采集 | Scrapy/Requests | 微博/豆瓣评论爬取 | | 数据处理 | Pandas/NLTK/Jieba | 文本清洗、分词、去停用词 | | 情感分析 | SnowNLP/TextBlob/BERT | 中文情感分值计算 | | 可视化 | ECharts/Matplotlib | 情感分布热力图、趋势图 | | 系统开发 | Flask/Django | Web服务接口开发 | | 数据存储 | MySQL/MongoDB | 结构化存储文本与情感标签 | #### 三、实现步骤详解 1. **数据采集模块** - 使用`Requests`库模拟浏览器请求,遵守`robots.txt`协议 - 示例爬虫代码片段: ```python import requests from bs4 import BeautifulSoup def weibo_crawler(keyword): url = f'https://s.weibo.com/weibo?q={keyword}' headers = {'User-Agent': 'Mozilla/5.0'} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'lxml') return [div.text for div in soup.select('.txt')] ``` 2. **数据预处理流程** - 文本清洗:正则表达式过滤特殊符号 - 中文分词:`Jieba`库实现精准切分 - 去停用词:加载哈工大停用词表 - 词向量化:`TF-IDF`或`Word2Vec`生成特征矩阵 3. **情感分析核心算法** - 基于词典方法:整合`知网Hownet`情感词典 - 机器学习方法:使用`sklearn`训练SVM分类器 - 深度学习方法:微调`BERT-wwm-ext`预训练模型 - SnowNLP基础实现: ```python from snownlp import SnowNLP def sentiment_analysis(text): return SnowNLP(text).sentiments # 返回0-1之间的情感分值 ``` 4. **可视化呈现方案** - 情感极性分布饼图 - 时间序列情感趋势折线图 - 关键词共现网络图 - 情感强度热力图 #### 四、推荐学习资料 1. **视频教程** - 微博舆情分析完整项目:<br> [Python+Flask微博舆情分析系统](https://www.bilibili.com/video/BV1NJ4m1w7oG)(含情感分析模块)[^2] 2. **开源项目参考** - 豆瓣电影评论分析系统:[GitHub开源代码](https://github.com/xxx)[^3] - 微博实时舆情监控:[Gitee项目仓库](https://gitee.com/xxx)[^4] 3. **工具书推荐** - 《Python自然语言处理实战》- 情感分析专项章节 - 《Flask Web开发实战》- 系统开发指南 - 《数据可视化之美》- ECharts高级应用 #### 五、课程设计拓展方向 1. 加入**多模态情感分析**(文本+表情符号) 2. 实现**实时情感监控**仪表盘 3. 构建**情感原因追溯**模型 4. 开发**跨平台微信小程序**应用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dllglvzhenfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值